Bidimensional Linked Matrix Decomposition for Pan-Omics Pan-Cancer Analysis

Eric F. Lock

University of Minnesota, Division of Biostatistics

With Jun Young Park, University of Toronto and Katie Hoadley, University of North Carolina

TAMU Statistics, 04/15/2022

Matrix factorization

Genes

• Gene expression matrix $X : m \times n$

• *m* genes for *n* breast cancer tumor samples

Tumor samples

• Low rank factorization: $X \approx UV$, $U: m \times r$, $V: r \times n$.

Matrix factorization: Nuclear norm

- Singular value decomposition (SVD): $X = UDV^T$
 - D is diagonal with singular values $D[i, i] = d_i$
- Minimize

$$rac{1}{2}||X-\hat{X}||_{F}^{2}+\lambda||\hat{X}||_{*}$$

where $||\cdot||_{\ast}$ defines the nuclear norm

$$\mathsf{SVD}(\hat{X}) = \hat{U}\hat{D}\hat{V}^{\mathsf{T}}
ightarrow ||\hat{X}||_* = \sum_{i=1}^{\min\{m,n\}} \hat{d}_i$$

• Then
$$\hat{X} = U\hat{D}V^T$$
 where $\hat{d}_i = max(d_i - \lambda, 0)$.

Matrix factorization: Nuclear norm

• Consider
$$X = \mathbf{A} + E$$
 where rank (\mathbf{A}) =r and $E \stackrel{indep}{\sim} N(0,1)$

SVD X = UDV where

$$U = [\mathbf{u}_1, \cdots, \mathbf{u}_r, u_{r+1}, \cdots]$$
$$D = \operatorname{diag}(\mathbf{a}_1 + e_1, \cdots, \mathbf{a}_r + e_r, e_{r+1}, \cdots)$$
$$V = [\mathbf{v}_1, \cdots, \mathbf{v}_r, v_{r+1}, \cdots]$$

• The largest singular value of $E \approx \sqrt{m} + \sqrt{n}$

• Standardize X to have error variance ≈ 1 and set

$$\lambda = \sqrt{m} + \sqrt{n}$$

Matrix factorization

• Gene expression matrix $X : m \times n$

• *m* genes for *n* breast cancer tumor samples

Tumor samples

• Rank 18 nuclear norm approximation.

Matrix factorization: missing data

• Gene expression matrix $X : m \times n$

• *m* genes for *n* breast cancer tumor samples

Tumor samples

• Minimize $\frac{1}{2}||X[\text{observed}] - \hat{X}[\text{observed}]||_F^2 + \lambda ||\hat{X}||_*$

Matrix factorization: missing data

• Gene expression matrix $X : m \times n$

• *m* genes for *n* breast cancer tumor samples

Tumor samples

• Minimize $\frac{1}{2}||X[\text{observed}] - \hat{X}[\text{observed}]||_F^2 + \lambda ||\hat{X}||_*$

Matrix factorization: missing data

• Gene expression matrix $X : m \times n$

• *m* genes for *n* breast cancer tumor samples

Tumor samples

Genes

• Minimize $\frac{1}{2}||X[\text{observed}] - \hat{X}[\text{observed}]||_F^2 + \lambda ||\hat{X}||_*$

Matrix factorization

Genes

• Gene expression matrix $X : m \times n$

Tumor samples

• *m* genes for *n* breast cancer tumor samples

• Low rank factorization: $X \approx UV$, $U: m \times r$, $V: r \times n$.

Matrix factorization

- First two principal component scores
 - Colored by breast tumor subtype

Component 1 scores

Vertically linked data

Tumor samples

Vertically linked data: individual factorizations

Vertically linked data: joint factorization

Vertically linked data: joint and individual factorization

Tumor samples

Joint + individual factorization methods

- ▶ JIVE [Lock, Hoadley, Marron, and Nobel, 2013]
 - "Joint and Individual Variation Explained"
- ▶ R.JIVE [O'Connell and Lock, 2016]
- ▶ AJIVE [Feng, Jiang, Hannig and Marron, 2018]
- SLIDE [Gaynanova and Li, 2018]
- GIPCA [Zhu, Li, Lock, 2018]
- COBE, SIFA, MOFA, & more!

•
$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$
 where $X_1 : m_1 \times n, X_2 : m_2 \times n$

•
$$X \approx J + A$$
 where $J = \begin{bmatrix} J_1 \\ J_2 \end{bmatrix}$ and $A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$

Minimize

$$\frac{1}{2}||X - J - A||_{F}^{2} + \lambda_{0}||J||_{*} + \lambda_{1}||A_{1}||_{*} + \lambda_{2}||A_{2}||_{*}$$

where
$$\lambda_0 = \sqrt{n} + \sqrt{m_1 + m_2}$$
, $\lambda_i = \sqrt{n} + \sqrt{m_i}$

▶ Update J, A_1 , A_2 until convergence

JIVE Estimates

• miRNA individual (reorder rows and columns)

• miRNA error (reorder rows and columns)

Estimates (factorized)

Estimates (factorized)

Joint PCs

Component 1 scores

Horizontally linked data

Horizontally linked data: JIVE factorization

BIDIFAC: 2×2

Suppose that $X_{ij} = G_{ij} + R_{ij} + C_{ij} + I_{ij} + E_{ij}$, where

Eric F. Lock

Bidimensional Linked Matrix Decomposition for Pan-Omics Pan-

Consider a set of pq matrices $\{X_{ij} : m_i \times n_j \mid i = 1, ..., p, j = 1, ..., q\}$, which may be concatenated to form the matrix

$$X_{00} = \begin{bmatrix} X_{11} & \dots & X_{1q} \\ \vdots & \ddots & \vdots \\ X_{p1} & \dots & X_{pq} \end{bmatrix}$$
$$X_{i0} = \begin{bmatrix} X_{i1}, \cdots, X_{iq} \end{bmatrix}$$
$$X_{0j} = \begin{bmatrix} X_{1j} \\ \vdots \\ X_{pj} \end{bmatrix}$$

Accordingly, let $m_0 = \sum_{i=1}^p m_i$ and $n_0 = \sum_{j=1}^q n_j$.

BIDIFAC: objective

• Objective:

$$f_{2}(\{G_{ij}, R_{ij}, C_{ij}, I_{ij} \mid i = 1, \dots, p, j = 1, \dots, q\})$$

= $\frac{1}{2} \sum_{i=1}^{p} \sum_{j=1}^{q} ||X_{ij} - G_{ij} - R_{ij} - C_{ij} - I_{ij}||_{F}^{2}$
+ $\lambda_{00} ||G_{00}||_{*} + \sum_{i=1}^{p} \lambda_{i0} ||R_{i0}||_{*} + \sum_{j=1}^{q} \lambda_{0j} ||C_{0j}||_{*} + \sum_{i=1}^{p} \sum_{j=1}^{q} \lambda_{ij} ||I_{ij}||_{*}.$

- Update G_{00} R_{i0} , C_{0j} and I_{ij} until convergence
- Fix penalties

$$\begin{array}{l} - \lambda_{00} = \sqrt{m_0} + \sqrt{n_0} \\ - \lambda_{i0} = \sqrt{m_i} + \sqrt{n_0} \\ - \lambda_{0j} = \sqrt{m_0} + \sqrt{n_j} \\ - \lambda_{ij} = \sqrt{m_i} + \sqrt{n_j} \end{array}$$

TCGA Breast Cancer Data

Tumor-Specific Columns Shared PCs

Figure: Principal components of the estimated column-shared structure, colored by subtype: Basal, HER2, Lum A, Lum B.

Pan-omics pan-cancer integration!

Pan-omics pan-cancer data

▶ Data from 6793 samples representing 29 cancer types:

- ACC, BLCA, BRCA, CESC, CHOL, CORE, DLBC, ESCA, HNSC, KICH, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, MESO, OV, PAAD, PCPG, PRAD, SARC, SKCM, STAD, TGCT, THCA, THYM, UCEC, and UCS.
- Data for 4 different 'omics platforms
 - Gene expression (mRNA), miRNA, DNA methylation, and protein abundance
- Possible shared structures:
 - mRNA+miRNA on BRCA+OV+UCEC
 - mRNA+methylation on KICH+KIRK+KIRP

etc..

•
$$(2^4 - 1) \cdot (2^{29} - 1) = 8053063665$$
 possible combinations!

BIDIFAC+: general framework

• Decompose X_{00} into structural *modules*:

$$X_{00} = \sum_{k=1}^{\kappa} S_{00}^{(k)} + E_{00}, \qquad (1)$$

where

$$S_{00}^{(k)} = \begin{bmatrix} S_{11}^{(k)} & S_{12}^{(k)} & \dots & S_{1q}^{(k)} \\ \vdots & \vdots & \vdots & \vdots \\ S_{\rho 1}^{(k)} & S_{\rho 2}^{(k)} & \dots & S_{\rho q}^{(k)} \end{bmatrix}$$

and the presence of each $S_{ij}^{(k)}$ is determined by a binary matrix of row indicators $R: p \times \kappa$ and column indicators $C: q \times \kappa$:

$$S_{ij}^{(k)} = \begin{cases} 0_{M_i \times N_j} & \text{if } R[i,k] = 0 \text{ or } C[j,k] = 0 \\ U_i^{(k)} V_j^{(k)} & \text{if } R[i,k] = 1 \text{ and } C[j,k] = 1 \end{cases}$$

BIDIFAC+: objective

• Minimize the following objective over R, C, and $\{S_{00}^{(k)}\}_{k=1}$:

$$||X_{00} - \sum_{k=1}^{\kappa} S_{00}^{(k)}||_{F}^{2} + \sum_{k=1}^{\kappa} \lambda_{k} ||S_{00}^{(k)}||_{*}$$

where

$$\lambda_k = \sqrt{\sum_{i=1}^p R[i,k]m_i} + \sqrt{\sum_{j=1}^q C[j,k]n_j}$$

▶ In practice
$$\kappa < (2^p - 1) \cdot (2^q - 1)$$

Only some possible modules are non-zero

BIDIFAC+: Uniqueness

• Let $\mathbb{S}_{\hat{X}}$ be the set of possible decompositions for \hat{X}_{00} :

$$\mathbb{S}_{\hat{X}} = \left\{ \{S_{00}^{(k)}\}_{k=1}^{K} \mid \hat{X}_{00} = \sum_{k=1}^{K} S_{00}^{(k)} \right\}.$$

Theorem

Consider $\{\hat{S}_{00}^{(k)}\}_{k=1}^{K} \in \mathbb{S}_{\hat{X}}$ and let $U_{0}^{(k)} \hat{D}^{(k)} V_{0}^{(k)T}$ give the SVD of $\hat{S}_{00}^{(k)}$. The following three properties uniquely identify $\{\hat{S}_{00}^{(k)}\}_{k=1}^{K}$. $\{\hat{S}_{00}^{(k)}\}_{k=1}^{K}$ minimizes $\sum_{k=1}^{\kappa} \lambda_{k} ||S_{00}^{(k)}||_{*}$ over $\mathbb{S}_{\hat{X}}$, $\{\hat{U}_{i}^{(k)}[\cdot, r] : R[i, k] = 1 \text{ and } \hat{D}^{(k)}[r, r] > 0\}$ are linearly independent for $i = 1, \dots, p$, $\{\hat{V}_{j}^{(k)}[\cdot, r] : C[j, k] = 1 \text{ and } \hat{D}^{(k)}[r, r] > 0\}$ are linearly independent for $j = 1, \dots, q$. Assume error entries E_{00} are iid N(0,1)

• Entries of
$$U_i^{(k)}, V_i^{(k)}$$
 have iid $N(0, 1/\lambda_k)$ priors

Then, the solution to the structured nuclear norm objective gives the posterior mode.

• Variance explained for each structural module $S_{00}^{(k)}$:

▶ Top structural modules, ranked by variance explained:

Module	Cancer types	Omics sources
1	All cancers	mRNA miRNA Meth Protein
2	All cancers	miRNA
3	BLCA BRCA CESC CHOL CORE DLBC ESCA HNSC	Meth
	LIHC LUAD LUSC OV PAAD PRAD SKCM STAD	
	TGCT UCEC UCS	
4	ACC BLCA CHOL CORE DLBC ESCA HNSC KICH	mRNA Meth
	KIRC KIRP LGG LIHC LUAD LUSC MESO PAAD PCPG	
	SARC SKCM STAD THCA THYM	
5	All cancers	mRNA
6	BRCA	mRNA miRNA Meth Protein
7	LGG	mRNA miRNA Protein
8	All cancers *but* LGG	Protein
9	THCA	mRNA miRNA Protein
10	All cancers *but* LGG and TGCT	miRNA
11	CHOL KIRC KIRP LIHC	mRNA miRNA Meth Protein
12	LGG	Meth
13	BLCA CESC CORE ESCA HNSC LUSC SARC STAD	mRNA miRNA Meth Protein
14	KICH KIRC KIRP	mRNA miRNA Protein
15	BLCA BRCA CESC CHOL ESCA HNSC LUAD LUSC	mRNA miRNA
	PAAD PRAD SKCM STAD TGCT UCEC UCS	

▶ Top structural modules, ranked by variance explained:

Module	Cancer types	Omics sources	
1	All cancers	mRNA miRNA Meth Protein	
2	All cancers	miRNA	
3	BLCA BRCA CESC CHOL CORE DLBC ESCA HNSC	Meth	
	LIHC LUAD LUSC OV PAAD PRAD SKCM STAD		
	TGCT UCEC UCS		
4	ACC BLCA CHOL CORE DLBC ESCA HNSC KICH	mRNA Meth	
	KIRC KIRP LGG LIHC LUAD LUSC MESO PAAD PCPG		
	SARC SKCM STAD THCA THYM		
5	All cancers	mRNA	
6	BRCA	mRNA miRNA Meth Protein	
7	LGG	mRNA miRNA Protein	
8	All cancers *but* LGG	Protein	
9	THCA	mRNA miRNA Protein	
10	All cancers *but* LGG and TGCT	miRNA	
11	CHOL KIRC KIRP LIHC	mRNA miRNA Meth Protein	
12	LGG	Meth	
13	BLCA CESC CORE ESCA HNSC LUSC SARC STAD	mRNA miRNA Meth Protein	
14	KICH KIRC KIRP	mRNA miRNA Protein	
15	BLCA BRCA CESC CHOL ESCA HNSC LUAD LUSC	mRNA miRNA	
	PAAD PRAD SKCM STAD TGCT UCEC UCS		

Sample scores

Eric F. Lock

Bidimensional Linked Matrix Decomposition for Pan-Omics Pan-

Eric F. Lock

Bidimensional Linked Matrix Decomposition for Pan-Omics Pan-

800

XIST-

1000

1000

800

▶ Top structural modules, ranked by variance explained:

Module	Cancer types	Omics sources	
1	All cancers	mRNA miRNA Meth Protein	
2	All cancers	miRNA	
3	BLCA BRCA CESC CHOL CORE DLBC ESCA HNSC	Meth	
	LIHC LUAD LUSC OV PAAD PRAD SKCM STAD		
	TGCT UCEC UCS		
4	ACC BLCA CHOL CORE DLBC ESCA HNSC KICH	mRNA Meth	
	KIRC KIRP LGG LIHC LUAD LUSC MESO PAAD PCPG		
	SARC SKCM STAD THCA THYM		
5	All cancers	mRNA	
6	BRCA	mRNA miRNA Meth Protein	
7	LGG	mRNA miRNA Protein	
8	All cancers *but* LGG	Protein	
9	THCA	mRNA miRNA Protein	
10	All cancers *but* LGG and TGCT	miRNA	
11	CHOL KIRC KIRP LIHC	mRNA miRNA Meth Protein	
12	LGG	Meth	
13	BLCA CESC CORE ESCA HNSC LUSC SARC STAD	mRNA miRNA Meth Protein	
14	KICH KIRC KIRP	mRNA miRNA Protein	
15	BLCA BRCA CESC CHOL ESCA HNSC LUAD LUSC	mRNA miRNA	
	PAAD PRAD SKCM STAD TGCT UCEC UCS		

Module 6

Sample scores

Eric F. Lock

Bidimensional Linked Matrix Decomposition for Pan-Omics Pan-

Sample scores

- Support: NCI grant R21CA231214-01
- ► References:
 - BIDIFAC: J Park & EF Lock. Integrative Factorization of Bidimensionally Linked Matrices. *Biometrics*, 76 (1): 61-74 2020.
 - BIDIFAC+: EF Lock, J Park & KA Hoadley. Bidimensional linked matrix factorization for pan-omics pan-cancer analysis. Annals of Applied Statistics, 16 (1): 193-215, 2022.

https://github.com/lockEF/bidifac