Bayesian Screening for Group Differences in High-Throughput Data

Eric F. Lock

University of Minnesota Division of Biostatistics

Joint work with DB Dunson, Duke University

lowa State Dept of Statistics, 11/16/2015

Organization

- Motivating example: TCGA methylation
 - Methylation array data
 - Distributional model
 - Two-group screening
- Comparison with other methods
- General framework & theory
 - General testing framework
 - Asymptotic forms
 - Consistency

Methylation array data Distributional model Two-group screening

DNA Methylation

• Methyl binds to CpG (cytosine-phosphate-guanine) sites

- Over 25 million CpG sites in human genome
- Methylation varies over sites / individuals / cell types
- Can affect gene transcription

Methylation array data Distributional model Two-group screening

TCGA array data

- N = 597 breast cancer tumor samples
 - From The Cancer Genome Atlas project
- Methylation measured for M = 21,986 CpG sites
 - Illumina 27 Beadchip array
 - Measurements from 0 (no methylation) to 1 (fully methylated)
- Goal: study role of methylation in clinical heterogeneity
 - Basal ($N_0 = 112$) vs. non-Basal ($N_1 = 485$) tumor subtypes

Methylation array data Distributional model Two-group screening

Example distributions

• Distribution of methylation values for select CpG sites

 TCGA methylation
 Methylation array data

 Methods comparison
 Distributional model

 Framework & theory
 Two-group screening

Kernel mixtures

• Model distribution of CpG m (m = 1, ..., M) as a mixture:

$$x_{mn} \sim \sum_{k=1}^{K} \pi_{mk} F_k$$

- $\{F_k\}_{k=1}^K$ are shared kernels
- $\Pi_m = \{\pi_{mk}\}_{k=1}^K$ are CpG-specific weights
- F_k is Normal (μ_k, σ_k) truncated between 0 and 1

Methylation array data Distributional model Two-group screening

Bayesian estimation

- Use normal-inverse-gamma prior for (μ_k, σ_k) 's
- Use $Dirichlet(\alpha)$ prior for Π_m 's
- Gibbs sample from conditional posteriors of
 - $\{(\mu_k, \sigma_k)\}_{k=1}^K$
 - $\{\Pi_m\}_{m=1}^M$
 - Kernel memberships $\{C_m\}_{m=1}^M$
- $\bullet\,$ Estimate α via maximum likelihood during sampling

 TCGA methylation
 M

 Methods comparison
 Framework & theory

Methylation array data Distributional model Two-group screening

Choice of K

- Choose K to maximize likelihood under cross validation.
- For fixed K:
 - Estimate F_1, \ldots, F_K , and α from a sub-sample of CpGs
 - For each remaining CpG:
 - Hold out a random observation
 - Estimate kernel weights on N-1 remaining observations
 - Compute log-density for held out sample
 - Consider mean log-density for all held-out observations

Methylation array data Distributional model Two-group screening

Cross-validated log-likelihood

• Choose K = 9

 TCGA methylation
 Methylation array data

 Methods comparison
 Distributional model

 Framework & theory
 Two-group screening

Kernel distributions

Eric F. Lock

Bayesian Screening for Group Differences in High-Through

Methylation array data Distributional model Two-group screening

Fitted mixture examples

e

2

-

0

0.0

0.2

Density

0.4

0.6

0.8

1.0

cg26668713

Methylation array data Distributional model Two-group screening

Test for group equality

- Compare Basal vs. non-Basal tumor subtypes at each CpG
 - Assess whether subtype distributions are different
- Subtype distributions $F_m^{(0)}, F_m^{(1)}$ are mixture of common kernels

$$F_m^{(0)} = \sum_{k=1}^K \pi_{mk}^{(0)} F_k$$
 and $F_m^{(1)} = \sum_{k=1}^K \pi_{mk}^{(1)} F_k$,

• For each *m* test

$$H_{0m} : \pi_{mk}^{(0)} = \pi_{mk}^{(1)} \text{ for all } k$$
$$H_{1m} : \pi_{mk}^{(0)} \neq \pi_{mk}^{(1)} \text{ for some } k.$$

Methylation array data Distributional model Two-group screening

Bayesian framework

- Estimate and fix F_1, \ldots, F_K , and α as before.
- Under H_{0m} , $\Pi_m^{(0)} = \Pi_m^{(1)} = \Pi_m \sim \mathsf{Dirichlet}(\alpha)$
- Under H_{1m} , $\Pi_m^{(0)}$, $\Pi_m^{(1)} \sim \text{Dirichlet}(\alpha)$ are independent
- P_0 is shared prior probability of equality at a given CpG
 - P₀ has Uniform(0,1) prior (see Scott & Berger 2010)

Methylation array data Distributional model Two-group screening

Posterior computation

• The full conditional posterior probability for H_{0m} is

$$\frac{P_0\beta(\alpha)\beta(\vec{n}_m+\alpha)}{P_0\beta(\alpha)\beta(\vec{n}_m+\alpha)+(1-P_0)\beta(\vec{n}_m^{(0)}+\alpha)\beta(\vec{n}_m^{(1)}+\alpha)}.$$

• $\bar{n}_m^{(i)}$ gives number of realizations in group *i* from each kernel

•
$$\vec{n}_m = \vec{n}_m^{(0)} + \vec{n}_m^{(1)}$$

• β is the multivariate beta function

$$\beta(\alpha) = \frac{\prod_{k=1}^{K} \Gamma(\alpha_k)}{\Gamma(\sum_{k=1}^{K} \alpha_k)}$$

Methylation array data Distributional model Two-group screening

Posterior computation

- In practice $\vec{n}_m^{(0)}$, $\vec{n}_m^{(1)}$ are unknown
- Kernel memberships are inferred probabilistically
- Gibbs sample from conditional posteriors of
 - $\{\Pi_m^{(0)}, \Pi_m^{(1)}\}_{m=1}^M$
 - $\{\vec{n}_m^{(0)}, \vec{n}_m^{(1)}\}_{m=1}^M$
 - $\{P(H_{0m} \mid \vec{n}_m^{(0)}, \vec{n}_m^{(1)})\}_{m=1}^M$
 - *P*₀
- Average over conditional posterior probabilities for H_{0m}

Methylation array data Distributional model Two-group screening

Basal vs. non-Basal groups

- Prior probability of equality: $\hat{P}_0 = 0.82$
- Distribution of posterior probabilities:

Methods comparison Framework & theory Methylation array data Distributional model

Basal vs. non-Basal groups

Methylation

cq17095936, pr(H₀|X)<0.001

cq10203483, pr(H₀|X)=0.21

Eric F. Lock

Methylation array data Distributional model Two-group screening

Basal vs. non-Basal groups

- 2117 CpG sites with $P(H_{0m}|X) < 0.01$
- Consider association with expression at their gene:

• Negative association & in PAM50 signature (Parker, 2009):

• MYBL2, EGFR, MIA, SFRP1 and MLPH

Related work: Methylation

- Multi-modality of methylation widely noted
 - Qiu & Zhang 2012, Izirray et al. 2008, Gervin et al 2011.
- Arbitrary thresholds define "methylated" vs "unmethylated"
 - Qiu & Zhang 2012 use 0.2, Chen et al. 2011 use 0.33
- Mixture models have been used for clustering
 - Kormaksson et al. 2012, Zhang et al 2012
- For group comparisons, t- and Wilcoxon tests most common
 - Bock 2012, Laird 2013

Related work: Methylation

- General tests for distributional equality are rarely used
- But they are well motivated...
 - Cancer & normal cells show different variability (Hansen 2011)
 - Groups may have differential "stability" across cells:

Related work

- Frequentist tests for distributional equality
 - Anderson-Darling, Shapiro-Wilk
- Bayesian nonparametric tests using Dirichlet processes
 - Dunson & Peddada 2008, Pennell & Dunson 2008
- Bayesian nonparametric tests using Polya trees
 - Ma & Wang 2011, Holmes et al 2014

Methods comparison for TCGA data

- Apply several methods to TCGA data
 - t-test, Wilcoxon test, Anderson-Darling test, Dunson & Peddada (RDDP), Ma & Wang (co-OPT), Holmes et al. (PT), and shared kernel test with fixed $P_0 = 0.5$.
- Permute class labels for each CpG and apply again.
- Permutation creates a null model to assess type I error
- Compare distribution of results (p-values or Bayes factors) for true and permuted data.

Methods comparison for TCGA data

Type I error rate

Eric F. Lock

Testing framework Asymptotic forms Consistency

Abstract testing framework

• Two distributions $F^{(0)}, F^{(1)}$ are mixtures

$$F^{(0)} = \sum_{k=1}^{K} \pi_k^{(0)} F_k$$
 and $F^{(1)} = \sum_{k=1}^{K} \pi_k^{(1)} F_k$,

- Test whether $\pi_k^{(0)} = \pi_k^{(1)} \ \forall \ k.$
- $F^{(0)}, F^{(1)}$ describe two populations with same strata
 - Test whether strata have different proportions

Testing framework Asymptotic forms Consistency

Abstract testing framework

- If strata/kernel memberships are known:
 - Test for association in $2 \times K$ table
 - Frequentist approaches: Chi-Square, Fisher's exact test
 - Bayesian Approaches: Good & Crook 1987, Albert 1997
- If memberships (and perhaps the F_k 's) are unknown:
 - Little statistical literature
 - Addressed partly in Xu et al 2010

Testing framework Asymptotic forms Consistency

Asymptotic forms

• Consider behavior of the full conditional for H_0 :

 $\frac{P_0\beta(\alpha)\beta(\vec{n}+\alpha)}{P_0\beta(\alpha)\beta(\vec{n}_m+\alpha)+(1-P_0)\beta(\vec{n}^{(0)}+\alpha)\beta(\vec{n}^{(1)}+\alpha)}$

 $\text{ as } \textit{N} \to \infty.$

• For the following assume:

•
$$\lambda_0 = rac{N_0}{N_0 + N_1}$$
 is fixed

•
$$\vec{n}^{(0)}, \vec{n}^{(1)}$$
 are known

Testing framework Asymptotic forms Consistency

Asymptotic forms

- THEOREM: Can derive a closed asymptotic form for the full conditional
- CORROLARY: Can fully characterize asymptotic distribution under H_0 and H_1
- Under $H_0: \Pi^{(0)} = \Pi^{(1)} = \Pi$, the log Bayes factor has order

$$\frac{K-1}{2}\log(N)+O_p(1)$$

• Under $H_1 : \Pi^{(0)} \neq \Pi^{(1)}$, let $\Pi^* = \lambda_0 \Pi^{(0)} + (1 - \lambda_0) \Pi^{(1)}$. The log of the Bayes factor has order

$$-N\sum\left\{\lambda_{0}\pi_{k}^{(0)}\log\left(\frac{\pi_{k}^{(0)}}{\pi_{k}^{*}}\right)+(1-\lambda_{0})\pi_{k}^{(1)}\log\left(\frac{\pi_{k}^{(1)}}{\pi_{k}^{*}}\right)\right\}+O_{p}\left(N^{1/2}\right),$$

Testing framework Asymptotic forms Consistency

Asymptotic forms

- Posterior probability of H_0 converges
 - Sublinearly to 1 under H_0
 - Exponentially to 0 under H_1
- Such rates have been observed for several Bayesian tests
 - Kass & Raftery 1995; Walker 2004; Johnson & Rossell 2010.
- Often such models are "local prior densities"
 - The parameter space under H_0 has positive density under H_1

Testing framework Asymptotic forms Consistency

Asymptotic behavior simulation

- Simulate hundreds of two-group univariate Gaussian mixture datasets
- Vary N for each simulated dataset
- Each simulation dataset generated under either H_0 or H_1
- Gibbs sample to estimate kernels, weights, and $pr(H_0)$

Testing framework Asymptotic forms Consistency

Asymptotic behavior simulation (details)

- **()** Draw N uniformly on a log-scale from 10 to 1,000,000.
- **2** Draw K uniformly from $\{2, \ldots, 9\}$.
- Draw μ_1, \ldots, μ_K independently from Un(0, 1).
- Draw $\sigma_1, \ldots, \sigma_K$ independently from Un $(0, \frac{1}{K})$
- **()** Draw H_0 from Bernoulli(0.5)
- **()** If $H_0 = 1$
 - Draw Π from a uniform, *K*-dimensional Dirichlet distribution
 - For n = 1, ..., N assign x_n to class 0 or 1 with equal probability
 - Draw $x_1, \ldots, x_N \in \mathbb{X}$ from $\sum_{k=1}^{K} \pi_k \operatorname{Tnorm}(\mu_k, \sigma_k, [0, 1])$,
- **7** If $H_0 = 0$
 - Draw Π⁽⁰⁾ and Π⁽¹⁾ independently from a uniform, K-dimensional Dirichlet distribution
 - For n = 1, ..., N assign x_n to class 0 or 1 with equal probability
 - Draw $x_1, \ldots, x_{N_0} \in \mathbb{X}^{(0)}$ from $\sum_{k=1}^{K} \pi_{k}^{(0)} \operatorname{Tnorm}(\mu_k, \sigma_k, [0, 1])$
 - Draw $x_1, \ldots, x_{N_1} \in \mathbb{X}^{(1)}$ from $\sum_{k=1}^{K} \pi_k^{(1)} \operatorname{Tnorm}(\mu_k, \sigma_k, [0, 1])$.

Testing framework Asymptotic forms Consistency

Asymptotic behavior simulation

- Normalize log Bayes factor by dominant asymptotic term
- For *H*₀ simulations:

$$\frac{2}{K-1}\log\left\{\frac{\operatorname{pr}(H_0|X)}{\operatorname{pr}(H_1|X)}\right\}$$

• For H_1 simulations:

$$\frac{\log\left\{\frac{\Pr(H_0|X)}{\Pr(H_1|X)}\right\}}{\sum\left\{\lambda_0 \pi_k^{(0)} \log\left(\frac{\pi_k^{(0)}}{\pi_k^*}\right) + (1-\lambda_0)\pi_k^{(1)} \log\left(\frac{\pi_k^{(1)}}{\pi_k^*}\right)\right\}}.$$

Testing framework Asymptotic forms Consistency

Simulation results

Eric F. Lock Bayesian Screening for Group Differences in High-Throughput

Testing framework Asymptotic forms Consistency

Consistency under misspecification

- Bayesian context:
 - True distribution is not within support of prior
- E.g: data may not result from a finite Gaussian mixture
- Misspecified models not "fully" consistent
- May still be consistent as a test for distributional equality

Testing framework Asymptotic forms Consistency

Consistency under misspecification

- Use work of Kleijn & Van der Vaaart (2006)
- General behavior under Bayesian misspecification:
 - $\bullet~$ Let ${\mathbb F}$ be space of all distributions admitted by prior
 - Let F_0 be data generating distribution
 - Let F^* be distribution in \mathbb{F} minimizing KL-divergence to F_0
 - Posterior concentrates on F^* as $N
 ightarrow \infty$
- Little work on misspecification asymptotics for Bayesian tests

Testing framework Asymptotic forms Consistency

Misspecification for finite mixtures

- Let x_1, \ldots, x_N be independent with density f_0 .
- Let \mathbb{F} be define all convex combinations of densities $\{f_k\}_{k=1}^{K}$
- Let P define a prior with positive support over \mathbb{F} .

• Let
$$f^* = \operatorname*{argmin}_{f \in \mathbb{F}} \mathsf{KL}(f_0 || f^*)$$

 THEOREM: let Π* = (π₁^{*},...,π_K^{*}) be the component weights corresponding to f*. Assume Π* is unique in that ∑π_kf_k = ∑π_k^{*}f_k = f* only if Π = Π*. Then, for any fixed ε > 0,

$$\mathsf{pr}(\mathsf{\Pi} \in \mathbb{S}^{K-1}: ||\mathsf{\Pi} - \mathsf{\Pi}^*|| \geq \epsilon \mid x_1, \dots, x_N) \to 0.$$

• Π^* is generally unique for normal $f'_k s$ (Yakowitz 1968)

Testing framework Asymptotic forms Consistency

Illustrative example

True distribution

Testing framework Asymptotic forms Consistency

Illustrative example

N=50

Testing framework Asymptotic forms Consistency

Illustrative example

N=500

Testing framework Asymptotic forms Consistency

Illustrative example

N=5000

Testing framework Asymptotic forms Consistency

Misspecification for finite mixtures

• REMARK: Assume $\pi_k^* > 0$ for k = 1, ..., K and $\sum \pi_k^* = 1$. Then, $f^* = \sum \pi_k^* f_k$ achieves the minimum KL-divergence in \mathbb{F} with respect to f_0 if and only if

$$\int \frac{f_1}{f^*} f_0 = \ldots = \int \frac{f_K}{f^*} f_0$$

If some $\pi_k^* = 0$, the minimum KL-divergence is achieved where $\int \frac{f_k}{f^*} f_0$ are equivalent for all $\pi_k^* > 0$.

Testing framework Asymptotic forms Consistency

Consistency under misspecification

• THEOREM: Assume $x_1^{(0)}, \ldots, x_{N_0}^{(0)}$ are independent with density $f^{(0)}, x_1^{(1)}, \ldots, x_{N_1}^{(1)}$ are independent with density $f^{(1)}$, and let

$$f^{*(0)} = \operatorname*{argmin}_{f \in \mathbb{F}} \operatorname{\mathsf{KL}}(f^{(0)} || f) \ , \ f^{*(1)} = \operatorname*{argmin}_{f \in \mathbb{F}} \operatorname{\mathsf{KL}}(f^{(1)} || f).$$

Under uniqueness assumptions for $f^{*(0)}$ and $f^{*(1)}$,

• if $f^{(0)}=f^{(1)}$, $\mathsf{pr}(H_0\mid X) o 1$ as $N o \infty$ and

• if
$$f^{*(0)} \neq f^{*(1)}$$
, $\operatorname{pr}(H_0 \mid X) \to 0$ as $N \to \infty$.

Testing framework Asymptotic forms Consistency

Future directions

- Consider shared kernel model for other contexts
 - Negative binomial kernels for RNA-Seq data
- Extend to multi-group testing problems
- More sophisticated dependence models
 - Hierarchical model with gene-level P'_0s
 - Spatial dependence
- Data-driven alternative hypotheses

Testing framework Asymptotic forms Consistency

Thank you!

- Reference:
 - EF Lock and DB Dunson. Shared kernel Bayesian screening. doi: 10.1093/biomet/asv032, 2015
- R code to reproduce application to TCGA data:
 - http://www.tc.umn.edu/~elock/MethTestingTCGA.zip
- Email: elock@umn.edu

Testing framework Asymptotic forms Consistency

Simulation study

- *M* variables and *N* observations
- Simulate data from a Gaussian mixture
- Mixture components shared across variables
- Two groups, with equal weights on $M \times P$ variables
- Five repeated simulations for each combination of
 - $M = \{10, 60, 360\}$
 - $N = \{30, 120, 480\}$
 - $P = 0.1, 0.2, \dots, 0.9$

Testing framework Asymptotic forms Consistency

Data generating details

- Draw μ_1, \ldots, μ_5 independently from Ga(1, 1).
- Draw $\sigma_1, \ldots, \sigma_5$ independently from Un(0, 1/2).
- For variables m = 1 through m = PM, draw data under H_0
 - Draw Π from a uniform Dirichlet distribution
 - Draw x_{m1}, \ldots, x_{mN} from $\sum_{k=1}^{K} \pi_k N(\mu_k, \sigma_k)$.
- For variables m = PM + 1 through m = M, draw data for two groups of size N/2
 - Draw $\Pi^{(0)}$ and $\Pi^{(1)}$ independently from a uniform Dirichlet distribution
 - Draw $x_{m1}, \ldots, x_{m(N/2)}$ from $\sum_{k=1}^{K} \pi_k \mathsf{N}(\mu_k, \sigma_k)$.
 - Draw $x_{m(N/2+1)}, \ldots, x_{mN}$ from $\sum_{k=1}^{K} \pi_k N(\mu_k, \sigma_k)$.

Testing framework Asymptotic forms Consistency

Simulation study

- For each simulated dataset perform
 - Shared kernels and shared estimate for P_0 among variables
 - Shared kernels among variables and fixed $P_0 = 0.5$
 - Independently estimated kernels and fixed $P_0 = 0.5$
 - The co-OPT method (Ma & Wang 2011)
- Compute Bayes error for each method:

$$\sum_{m=1}^{M} [\{1 - \mathbb{1}(H_{0m})\} \operatorname{pr}(H_{0m} \mid X) + \mathbb{1}(H_{0m})\{1 - \operatorname{pr}(H_{0m} \mid X)\}]/M.$$

Testing framework Asymptotic forms Consistency

Results

		M= 10	M = 60	M = 360
N = 30	Shared kernels and estimated P_0 Shared kernels and $P_0 = 0.5$	$\begin{array}{c} {\bf 0.40} \pm 0.03 \\ {\bf 0.41} \pm 0.02 \end{array}$	$\begin{array}{c} {\bf 0.32 \pm 0.02} \\ {\bf 0.36 \pm 0.02} \end{array}$	$\begin{array}{c} {\bf 0.31} \pm 0.02 \\ {\bf 0.36} \pm 0.01 \end{array}$
	Separate kernels and $P_0 = 0.5$ co-OPT test	0.47 ± 0.02 0.46 ± 0.02	0.47 ± 0.01 0.49 ± 0.01	0.47 ± 0.01 0.49 ± 0.02
N = 120	Shared kernels and estimated P_0 Shared kernels and $P_0 = 0.5$ Separate kernels and $P_0 = 0.5$ co-OPT test	$\begin{array}{c} \textbf{0.20} \pm 0.02 \\ \textbf{0.20} \pm 0.03 \\ \textbf{0.32} \pm 0.02 \\ \textbf{0.40} \pm 0.02 \end{array}$	$\begin{array}{c} \textbf{0.19} \pm 0.03 \\ \textbf{0.20} \pm 0.02 \\ \textbf{0.30} \pm 0.04 \\ \textbf{0.40} \pm 0.02 \end{array}$	$\begin{array}{c} \textbf{0.16} \pm 0.01 \\ \textbf{0.18} \pm 0.01 \\ \textbf{0.30} \pm 0.01 \\ \textbf{0.43} \pm 0.03 \end{array}$
N = 480	Shared kernels and estimated P_0 Shared kernels and $P_0 = 0.5$ Separate kernels and $P_0 = 0.5$ co-OPT test	$\begin{array}{c} \textbf{0.07} \pm 0.02 \\ \textbf{0.08} \pm 0.02 \\ \textbf{0.12} \pm 0.05 \\ \textbf{0.29} \pm 0.07 \end{array}$	$\begin{array}{c} \textbf{0.09} \pm 0.02 \\ \textbf{0.09} \pm 0.02 \\ \textbf{0.14} \pm 0.02 \\ \textbf{0.28} \pm 0.03 \end{array}$	$\begin{array}{c} \textbf{0.08} \pm 0.01 \\ \textbf{0.09} \pm 0.01 \\ \textbf{0.13} \pm 0.01 \\ \textbf{0.29} \pm 0.04 \end{array}$

Testing framework Asymptotic forms Consistency

Results: Estimated P_0 's

N= 120 , M= 10

N= 120, M= 360

N= 480 , M= 10

0.8

0.0

0.0 0.4 0.8

<0° 4°

N= 480 , M= 60

N= 480 , M= 360

0.4 0.8

Eric F. Lock

