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Organization

@ Motivating example: TCGA methylation

e Methylation array data
o Distributional model

e Two-group screening

@ Comparison with other methods

@ General framework & theory

o General testing framework
e Asymptotic forms

e Consistency
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Distributional model
Two-group screening

DNA Methylation

@ Methyl binds to CpG (cytosine-phosphate-guanine) sites
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@ Over 25 million CpG sites in human genome
@ Methylation varies over sites / individuals / cell types

@ Can affect gene transcription
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Distributional model
Two-group screening

TCGA array data

@ N = 597 breast cancer tumor samples

e From The Cancer Genome Atlas project

@ Methylation measured for M = 21,986 CpG sites

o lllumina 27 Beadchip array

o Measurements from 0 (no methylation) to 1 (fully methylated)

@ Goal: study role of methylation in clinical heterogeneity

o Basal (Np = 112) vs. non-Basal (N; = 485) tumor subtypes
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Distributional model
Two-group screening

Example distributions

@ Distribution of methylation values for select CpG sites
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Methylation array data

Two-group screening

Kernel mixtures

e Model distribution of CpG m (m=1,..., M) as a mixture:

K
Xmn ™~ Zﬂmk”:k
k=1

o {Fi}¥_, are shared kernels

o My = {mmk}_, are CpG-specific weights

@ Fy is Normal(puk, ok) truncated between 0 and 1
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Methylation array data

Two-group screening

Bayesian estimation

@ Use normal-inverse-gamma prior for (px, 0k)'s

e Use Dirichlet(«) prior for My,'s
@ Gibbs sample from conditional posteriors of
o {(kk: o) }ia
o {NMm}ps
o Kernel memberships {C,}M_;
@ Estimate o via maximum likelihood during sampling
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Methylation array data

Two-group screening

Choice of K

@ Choose K to maximize likelihood under cross validation.

@ For fixed K:

o Estimate Fi,..., Fk, and o from a sub-sample of CpGs

e For each remaining CpG:

e Hold out a random observation
o Estimate kernel weights on N — 1 remaining observations

o Compute log-density for held out sample

o Consider mean log-density for all held-out observations
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Methylation array data

Two-group screening

Cross-validated log-likelihood
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Methylation array data

Two-group screening

Kernel distributions
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Methylation array data

Two-group screening

Fitted mixture examples
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Methylation array data
Distributional model

Test for group equality

@ Compare Basal vs. non-Basal tumor subtypes at each CpG

o Assess whether subtype distributions are different

@ Subtype distributions F,Sqo), F,g,l) are mixture of common kernels

Zw(O)F and F ZT{' «Fr

k=1
@ For each m test

Hom = 7°) = 1) for all k

Tk =

Him : E,?Z * Sz for some k.

Eric F. Lock



Methylation array data
Distributional model

Bayesian framework

@ Estimate and fix Fq,..., Fk, and « as before.

Under Hom, N9 = N = M, ~ Dirichlet(a)

o Under Hip, I'IST?), I'Ig) ~ Dirichlet(«) are independent

Py is shared prior probability of equality at a given CpG
e Py has Uniform(0, 1) prior (see Scott & Berger 2010)
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Methylation array data
Distributional model

Posterior computation

@ The full conditional posterior probability for Ho, is

PoB()B(iim + @) |
PoB(@)B(fim + ) + (1 — Po)B(ii) + )B(iin) + )

° ﬁ(,,',) gives number of realizations in group i from each kernel

o fim = i) + i
e [ is the multivariate beta function
K
[Ti—y M)

)= e )
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Methylation array data
Distributional model

Posterior computation

40) 1)

@ In practice Apy,’, ny’ are unknown

@ Kernel memberships are inferred probabilistically

@ Gibbs sample from conditional posteriors of

° {H(O) ng) M

m=1
° { m m 1
o {P(Hom | %), i)
o Py

@ Average over conditional posterior probabilities for Hynm,
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Methylation array data
Distributional model

Basal vs. non-Basal groups

@ Prior probability of equality: Py = 0.82

@ Distribution of posterior probabilities:
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Methylation array data
Distributional model

non-Basal groups
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Methylation array data
Distributional model

Basal vs. non-Basal groups

e 2117 CpG sites with P(Hom|X) < 0.01
o Consider association with expression at their gene:

Expression-Methylation Rho Correlations

- JFFW’”HWM
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Spearman's correlation

o Negative association & in PAM50 signature (Parker, 2009):
o MYBL2, EGFR, MIA, SFRP1 and MLPH
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Related work: Methylation

Multi-modality of methylation widely noted
e Qiu & Zhang 2012, Izirray et al. 2008, Gervin et al 2011.

Arbitrary thresholds define “methylated” vs “unmethylated”
e Qiu & Zhang 2012 use 0.2, Chen et al. 2011 use 0.33

@ Mixture models have been used for clustering

o Kormaksson et al. 2012, Zhang et al 2012

For group comparisons, t- and Wilcoxon tests most common

e Bock 2012, Laird 2013
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Related work: Methylation

o General tests for distributional equality are rarely used

@ But they are well motivated...

o Cancer & normal cells show different variability (Hansen 2011)

e Groups may have differential “stability” across cells:

Example CpG

Density
01234
S

Methylation
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http://www.nature.com/ng/journal/v43/n8/full/ng.865.html

Related work

@ Frequentist tests for distributional equality

e Anderson-Darling, Shapiro-Wilk

@ Bayesian nonparametric tests using Dirichlet processes

e Dunson & Peddada 2008, Pennell & Dunson 2008

@ Bayesian nonparametric tests using Polya trees

e Ma & Wang 2011, Holmes et al 2014
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http://biomet.oxfordjournals.org/content/95/4/859.short
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https://stat.duke.edu/~lm186/files/optree.pdf
http://ba.stat.cmu.edu/journal/forthcoming/holmes.pdf

Methods comparison for TCGA data

@ Apply several methods to TCGA data

o t-test, Wilcoxon test, Anderson-Darling test, Dunson &
Peddada (RDDP), Ma & Wang (co-OPT), Holmes et al.
(PT), and shared kernel test with fixed Py = 0.5.

@ Permute class labels for each CpG and apply again.
@ Permutation creates a null model to assess type | error

e Compare distribution of results (p-values or Bayes factors) for
true and permuted data.
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Methods comparison for TCGA data
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Asymptotic forms
Consistency

Abstract testing framework

e Two distributions F(©, F(1) are mixtures

0)—Z7rk Fx and F( ZT{' Fy,

k=1

@ Test whether 775(0) = 7r,(<1) Y k.

o FO F@) describe two populations with same strata

e Test whether strata have different proportions

Eric F. Lock



Asymptotic forms
Consistency

Abstract testing framework

o If strata/kernel memberships are known:

e Test for association in 2 x K table
e Frequentist approaches: Chi-Square, Fisher's exact test

o Bayesian Approaches: Good & Crook 1987, Albert 1997

e If memberships (and perhaps the Fy's) are unknown:

o Little statistical literature

o Addressed partly in Xu et al 2010
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Testing framework

Consistency

Asymptotic forms

@ Consider behavior of the full conditional for Hy:

Pof(a)B(+ )
PoB(a)B(Am + a) + (1 = Po)B(A® + ) B(A) + a)

as N — oo.

@ For the following assume:

— N e
e N = Noi W, 1S fixed

o A9, AV are known
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Testing framework

Consistency

Asymptotic forms

e THEOREM: Can derive a closed asymptotic form for the full
conditional

@ CORROLARY: Can fully characterize asymptotic distribution
under Hyg and H;

@ Under Ho : M©® = M) =, the log Bayes factor has order
K-1

log(N) + Op(1)

e Under H; : M(© #+ N Jet M* = )\on(o) +(1- )‘O)n(l)-
The log of the Bayes factor has order

(0)

(1)
(0) Tk (1) Tk 1/2
—ND :{/\owk log ( s )+(1—)\0)7rk |og< Tr;i >}+o,, (/v / ) :
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Testing framework

Consistency

Asymptotic forms

@ Posterior probability of Hy converges

o Sublinearly to 1 under Hy

o Exponentially to 0 under H;

@ Such rates have been observed for several Bayesian tests

o Kass & Raftery 1995; Walker 2004; Johnson & Rossell 2010.

@ Often such models are “local prior densities”

o The parameter space under Hy has positive density under H;

Eric F. Lock



Testing framework

Consistency

Asymptotic behavior simulation

@ Simulate hundreds of two-group univariate Gaussian mixture
datasets

e Vary N for each simulated dataset
@ Each simulation dataset generated under either Hy or H;

@ Gibbs sample to estimate kernels, weights, and pr(Hp)
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Testing framework

Consistency

Asymptotic behavior simulation (details)

o
2]
o
o
o
o

Draw N uniformly on a log-scale from 10 to 1,000, 000.
Draw K uniformly from {2,...,9}.
Draw p1, ..., uk independently from Un(0,1).

Draw o1, ...,0k independently from Un(0 %)
Draw Hp from Bernoulli(0.5)
If Hp=1
e Draw [1 from a uniform, K-dimensional Dirichlet distribution
e Forn=1,..., N assign x, to class 0 or 1 with equal probability
e Draw xp,...,xy € X from Zle mk Tnorm( ik, ok, [0, 1]),
If Hp=0
o Draw M® and N® independently from a uniform,
K-dimensional Dirichlet distribution

o

e Forn=1,..., N assign x, to class 0 or 1 with equal probability
o Draw x1,...,xn, € XO from K 7O Tnorm(pux, o, [0, 1])
o Draw x1,...,xy, € X from K 7 Tnorm(u, o, [0, 1]).

Eric F. Lock



Testing framework

Consistency

Asymptotic behavior simulation

@ Normalize log Bayes factor by dominant asymptotic term

@ For Hp simulations:

2 pr(Ho|X)
K1 '°g{pr(H1|x>}

@ For H; simulations:
pr(Ho| X)
log {ﬁ(mm}

5> {dor(” log (%))) + (1= 20)mP log (’j}?) }
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Testing framework

Consistency

Simulation results

Normalized Bayes factor (H_0) Normalized Bayes factor (H_1)
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Testing framework
Asymptotic forms

Consistency under misspecification

Bayesian context:
e True distribution is not within support of prior

o E.g: data may not result from a finite Gaussian mixture

Misspecified models not “fully” consistent

May still be consistent as a test for distributional equality

Eric F. Lock



Testing framework
Asymptotic forms

Consistency under misspecification

@ Use work of Kleijn & Van der Vaaart (2006)

@ General behavior under Bayesian misspecification:

o Let F be space of all distributions admitted by prior
o Let Fy be data generating distribution
o Let F* be distribution in F minimizing KL-divergence to Fy

o Posterior concentrates on F* as N — oo

o Little work on misspecification asymptotics for Bayesian tests

Eric F. Lock



Testing framework
Asymptotic forms

Misspecification for finite mixtures

@ Let x1,...,xy be independent with density f.
o Let F be define all convex combinations of densities {f; }%_;
@ Let P define a prior with positive support over F.
o Let f* = argmin KL(f]|*)
ferF
e THEOREM: let M* = (77, ..., 7)) be the component weights
corresponding to f*. Assume [1* is unique in that

S omrfy = ZWka = f* only if [T =1T11*. Then, for any fixed
e >0,

pr(Me S 1 |IN—N*|| > €| x1,...,xn) = 0.

e MM* is generally unique for normal f/s (Yakowitz 1968)
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Testing framework
Asymptotic forms

[llustrative example
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Testing framework
Asymptotic forms

[llustrative example
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Testing framework
Asymptotic forms

[llustrative example
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Testing framework
Asymptotic forms

[llustrative example
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Testing framework
Asymptotic forms

Misspecification for finite mixtures

e REMARK: Assume 7t >0 for k=1,...,K and ) 7} = 1.
Then, f* =3 m;fi achieves the minimum KlL-divergence in F
with respect to fy if and only if

ﬁo— /fo

If some 7 = 0, the minimum KL-divergence is achieved
where [ f&fy are equivalent for all 7} > 0.
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Testing framework
Asymptotic forms

Consistency under misspecification

e THEOREM: Assume X{O), .. ,x,(\z) are independent with

density (0, x{l), e >X/(V11) are independent with density (1),
and let

£ = argmin KL(FO||f) , £O = argmin KL(FD|f).
fer feF

Under uniqueness assumptions for £*(©) and £*(1),
o if fO = fM) pr(Hy | X) = 1as N — oo and
o if F¥O) £ £ pr(Hy | X) — 0as N — occ.
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Testing framework
Asymptotic forms

Future directions

Consider shared kernel model for other contexts

o Negative binomial kernels for RNA-Seq data

@ Extend to multi-group testing problems

(]

More sophisticated dependence models

o Hierarchical model with gene-level Pjs
e Spatial dependence

@ Data-driven alternative hypotheses
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Testing framework
Asymptotic forms

Thank you!

@ Reference:

o EF Lock and DB Dunson. Shared kernel Bayesian screening.
doi: 10.1093/biomet/asv032, 2015

@ R code to reproduce application to TCGA data:

e http://www.tc.umn.edu/~elock/MethTestingTCGA.zip

@ Email: elock@umn.edu
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Testing framework
Asymptotic forms

Simulation study

M variables and N observations

Simulate data from a Gaussian mixture

@ Mixture components shared across variables

@ Two groups, with equal weights on M x P variables

Five repeated simulations for each combination of
o M = {10, 60,360}
o N = {30,120,480}
o P=0.1,0.2,...,0.9
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Testing framework
Asymptotic forms

Data generating details

e Draw pyg,..., us independently from Ga(1,1).

e Draw o1, ...,05 independently from Un(0,1/2).

@ For variables m = 1 through m = PM, draw data under Hy
o Draw I1 from a uniform Dirichlet distribution

K
o Draw Xxm1,...,xmn from >, mN(p, o).

e For variables m = PM + 1 through m = M, draw data for two
groups of size N /2

o Draw MN© and M® independently from a uniform Dirichlet

distribution
o Draw Xmi, ..., Xm(n/2) from Zle TeN(pk, ok)-
e Draw Xm(N/2+41)5 - - - > XmN from Zle 7TkN(,uk, O'k).
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Testing framework
Asymptotic forms

Simulation study

@ For each simulated dataset perform

o Shared kernels and shared estimate for Py among variables
o Shared kernels among variables and fixed Py = 0.5

o Independently estimated kernels and fixed Py = 0.5

o The co-OPT method (Ma & Wang 2011)

@ Compute Bayes error for each method:

M
> [{1=1(Hom)}pr(Hom | X)+1(Hom){1—pr(Hom | X)}]/M.

m=1
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Results

Testing framework
Asymptotic forms

M=10 M =60 M = 360

Shared kernels and estimated Py 0.40£0.03 0.32£0.02 0.31 £0.02

N = 30 Shared kernels and Py = 0.5 0.41+0.02 036+0.02 0.36+0.01
- Separate kernels and Py = 0.5 0.47 +0.02 0.47+0.01 0.47+0.01
co-OPT test 0.46 +0.02 0.49-+0.01 0.49+0.02

Shared kernels and estimated P, 0.20 +0.04 0.19+0.03 0.16 =0.01

N = 120 Shared kernels and Py = 0.5 0.20+0.03 0.20+£0.02 0.18+0.01
- Separate kernels and Py = 0.5 0.32+0.02 030+0.04 0.30+0.01
co-OPT test 0.40+0.02 0.40+0.02 0.43+0.03

Shared kernels and estimated Py, 0.07 £0.02 0.09£0.02 0.08 £0.01

N — 480 Shared kernels and Py = 0.5 0.08 +0.02 0.09+0.02 0.09+0.01
- Separate kernels and Py = 0.5 0.12+0.05 0.14+0.02 0.13+0.01
co-OPT test 0.29 +£0.07 0.28+0.03 0.29 +0.04

Eric F. Lock



amework

Asymptotic forms

Testing fr:
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