Bayesian Screening for Group Differences in High-Throughput Data

Eric F. Lock

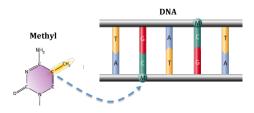
University of Minnesota Division of Biostatistics

Joint work with DB Dunson, Duke University

Columbia University Dept of Biostatistics, 12/08/2016

DNA Methylation

• Methyl binds to CpG (cytosine-phosphate-guanine) sites



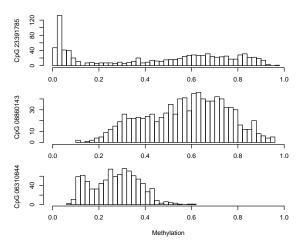
- Over 25 million CpG sites in human genome
- Methylation varies over sites / individuals / cell types
- Can affect gene transcription

TCGA array data: BRCA

- N = 597 breast cancer tumor samples
 - From The Cancer Genome Atlas project
- Methylation measured for M = 21,986 CpG sites
 - Illumina HumanMethylation27 array
 - Measurements from 0 (no methylation) to 1 (fully methylated)
- Goal: study role of methylation in clinical heterogeneity
 - ullet Basal ($N_0=112$) vs. non-Basal ($N_1=485$) tumor subtypes

Example distributions

• Distribution of methylation values for select CpG sites



Kernel mixtures

• Model distribution of CpG m (m = 1, ..., M) as a mixture:

$$x_{mn} \sim \sum_{k=1}^{K} \pi_{mk} F_k$$

- $\{F_k\}_{k=1}^K$ are shared kernels
- $\Pi_m = \{\pi_{mk}\}_{k=1}^K$ are CpG-specific weights
- F_k is Normal (μ_k, σ_k) truncated between 0 and 1

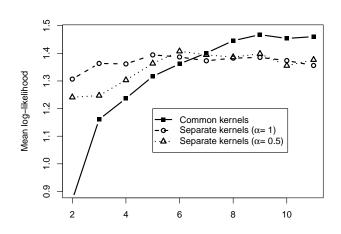
Bayesian estimation

- ullet Use normal-inverse-gamma prior for (μ_k,σ_k) 's
- Use $Dirichlet(\alpha)$ prior for Π_m 's
- Gibbs sample from conditional posteriors of
 - $\bullet \ \{(\mu_k,\sigma_k)\}_{k=1}^K$
 - $\{\Pi_m\}_{m=1}^{M}$
 - Kernel memberships $\{C_m\}_{m=1}^M$
- \bullet Estimate α via maximum likelihood during sampling

Choice of *K*

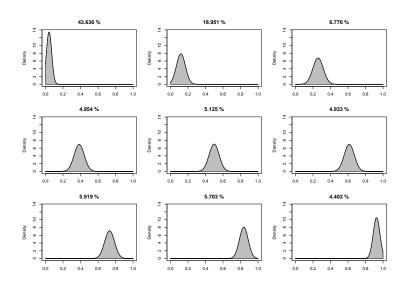
- Choose K to maximize likelihood under cross validation.
- For fixed K:
 - Estimate F_1, \ldots, F_K , and α from a sub-sample of CpGs
 - For each remaining CpG:
 - Hold out a random observation
 - ullet Estimate kernel weights on N-1 remaining observations
 - Compute log-density for held out sample
 - Consider mean log-density for all held-out observations

Cross-validated log-likelihood

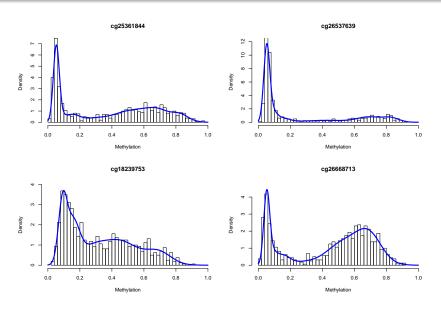


• Choose K = 9

Kernel distributions

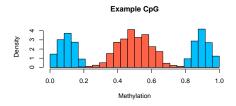


Fitted mixture examples



Test for group equality

- For group comparisons at a CpG, t- and Wilcoxon tests are most common
 - Bock 2012, Laird 2013
- General tests for distributional equality are rarely used
- But they are well motivated...
 - Cancer & normal cells show different variability (Hansen 2011)
 - Groups may have differential "stability" across cells:



Test for group equality

- Compare Basal vs. non-Basal tumor subtypes at each CpG
 - Assess whether subtype distributions are different
- Subtype distributions $F_m^{(0)}, F_m^{(1)}$ are mixture of common kernels

$$F_m^{(0)} = \sum_{k=1}^K \pi_{mk}^{(0)} F_k$$
 and $F_m^{(1)} = \sum_{k=1}^K \pi_{mk}^{(1)} F_k$,

• For each *m* test

$$H_{0m}: \pi_{mk}^{(0)} = \pi_{mk}^{(1)} \text{ for all } k$$

 $H_{1m}: \pi_{mk}^{(0)} \neq \pi_{mk}^{(1)} \text{ for some } k.$

Bayesian framework

- Estimate and fix F_1, \ldots, F_K , and α as before.
- Under H_{0m} , $\Pi_m^{(0)} = \Pi_m^{(1)} = \Pi_m \sim \text{Dirichlet}(\alpha)$
- Under H_{1m} , $\Pi_m^{(0)}$, $\Pi_m^{(1)}$ \sim Dirichlet(α) are independent
- ullet P_0 is shared prior probability of equality at a given CpG
 - P_0 given Uniform(0,1) prior (see Scott & Berger 2010)

Posterior computation

• The full conditional posterior probability for H_{0m} is

$$\frac{P_0\beta(\alpha)\beta(\vec{n}_m+\alpha)}{P_0\beta(\alpha)\beta(\vec{n}_m+\alpha)+(1-P_0)\beta(\vec{n}_m^{(0)}+\alpha)\beta(\vec{n}_m^{(1)}+\alpha)}.$$

- $\vec{n}_m^{(i)}$ gives number of realizations in group i from each kernel
- $\vec{n}_m = \vec{n}_m^{(0)} + \vec{n}_m^{(1)}$
- ullet eta is the multivariate beta function

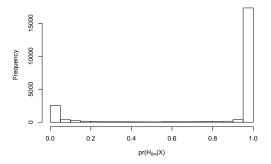
$$\beta(\alpha) = \frac{\prod_{k=1}^{K} \Gamma(\alpha_k)}{\Gamma(\sum_{k=1}^{K} \alpha_k)}.$$

Posterior computation

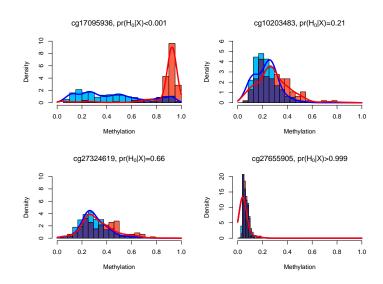
- In practice $\vec{n}_m^{(0)}$, $\vec{n}_m^{(1)}$ are unknown
- Kernel memberships are inferred probabilistically
- Gibbs sample from conditional posteriors of
 - $\{\Pi_m^{(0)}, \Pi_m^{(1)}\}_{m=1}^M$
 - $\{\vec{n}_m^{(0)}, \vec{n}_m^{(1)}\}_{m=1}^M$
 - $\{P(H_{0m} \mid \vec{n}_m^{(0)}, \vec{n}_m^{(1)})\}_{m=1}^M$
 - P₀
- Average over conditional posterior probabilities for H_{0m}

Basal vs. non-Basal groups

- Prior probability of equality: $\hat{P}_0 = 0.82$
- Distribution of posterior probabilities:

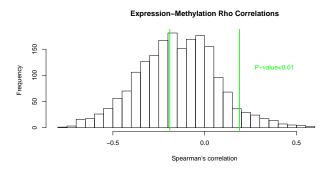


Basal vs. non-Basal groups



Basal vs. non-Basal groups

- 2117 CpG sites with $P(H_{0m}|X) < 0.01$
- Consider association with expression at their gene:



- Negative association & in PAM50 signature (Parker, 2009):
 - MYBL2, EGFR, MIA, SFRP1 and MLPH

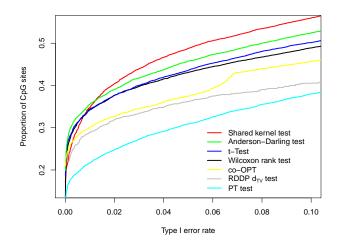
Related work

- Frequentist tests for distributional equality
 - Anderson-Darling, Shapiro-Wilk
- Bayesian nonparametric tests using Dirichlet processes
 - Dunson & Peddada 2008, Pennell & Dunson 2008
- Bayesian nonparametric tests using Polya trees
 - Ma & Wang 2011, Holmes et al 2014

Methods comparison for TCGA data

- Apply several methods to TCGA data
 - t-test, Wilcoxon test, Anderson-Darling test, Dunson & Peddada (RDDP), Ma & Wang (co-OPT), Holmes et al. (PT), and shared kernel test with fixed $P_0 = 0.5$.
- Permute class labels for each CpG and apply again.
- Permutation creates a null model to assess type I error
- Compare distribution of results (p-values or Bayes factors) for true and permuted data.

Methods comparison for TCGA data



THEORETICAL INTERLUDE*

Abstract testing framework

• Two distributions $F^{(0)}$, $F^{(1)}$ are mixtures

$$F^{(0)} = \sum_{k=1}^{K} \pi_k^{(0)} F_k$$
 and $F^{(1)} = \sum_{k=1}^{K} \pi_k^{(1)} F_k$,

- Test whether $\pi_k^{(0)} = \pi_k^{(1)} \ \forall \ k$.
- $F^{(0)}, F^{(1)}$ describe two populations with same strata
 - Test whether strata have different proportions

Abstract testing framework

- If strata/kernel memberships are known:
 - Test for association in $2 \times K$ table
 - Frequentist approaches: Chi-Square, Fisher's exact test
 - Bayesian Approaches: Good & Crook 1987, Albert 1997
- If memberships (and perhaps the F_k 's) are unknown:
 - Little statistical literature
 - Addressed partly in Xu et al 2010

Asymptotic forms

• Consider behavior of the full conditional for H_0 :

$$\frac{P_0\beta(\alpha)\beta(\vec{n}+\alpha)}{P_0\beta(\alpha)\beta(\vec{n}_m+\alpha)+(1-P_0)\beta(\vec{n}^{(0)}+\alpha)\beta(\vec{n}^{(1)}+\alpha)}$$

as $N \to \infty$.

- For the following assume:
 - $\lambda_0 = \frac{N_0}{N_0 + N_1}$ is fixed
 - $\vec{n}^{(0)}, \vec{n}^{(1)}$ are known

Asymptotic forms

- THEOREM: Can derive a closed asymptotic form for the full conditional
- CORROLARY: Can fully characterize asymptotic distribution under H_0 and H_1
- Under $H_0:\Pi^{(0)}=\Pi^{(1)}=\Pi$, the log Bayes factor has order

$$\frac{K-1}{2}\log(N)+O_p(1)$$

• Under $H_1:\Pi^{(0)}\neq\Pi^{(1)}$, let $\Pi^*=\lambda_0\Pi^{(0)}+(1-\lambda_0)\Pi^{(1)}$. The log of the Bayes factor has order

$$-N \sum \left\{ \lambda_0 \pi_k^{(0)} \log \left(\frac{\pi_k^{(0)}}{\pi_k^*} \right) + (1 - \lambda_0) \pi_k^{(1)} \log \left(\frac{\pi_k^{(1)}}{\pi_k^*} \right) \right\} + O_p \left(N^{1/2} \right),$$

Asymptotic forms

- Posterior probability of H_0 converges
 - Sublinearly to 1 under H_0
 - Exponentially to 0 under H_1
- Such rates have been observed for several Bayesian tests
 - Kass & Raftery 1995; Walker 2004; Johnson & Rossell 2010.
- Often such models are "local prior densities"
 - ullet The parameter space under H_0 has positive density under H_1

Consistency under misspecification

- Bayesian context:
 - True distribution is not within support of prior
- E.g: data may not result from a finite Gaussian mixture
- Misspecified models not "fully" consistent
- May still be consistent as a test for distributional equality

Consistency under misspecification

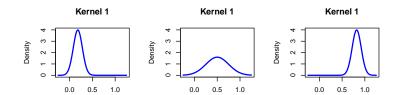
- Use work of Kleijn & Van der Vaaart (2006)
- General behavior under Bayesian misspecification:
 - Let F be space of all distributions admitted by prior
 - Let F_0 be data generating distribution
 - Let F^* be distribution in $\mathbb F$ minimizing KL-divergence to F_0
 - Posterior concentrates on F^* as $N \to \infty$
- Little work on misspecification asymptotics for Bayesian tests

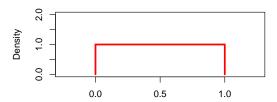
Misspecification for finite mixtures

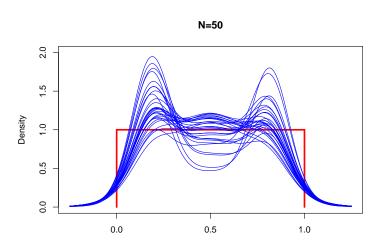
- Let x_1, \ldots, x_N be independent with density f_0 .
- Let $\mathbb F$ be define all convex combinations of densities $\{f_k\}_{k=1}^K$
- Let P define a prior with positive support over \mathbb{F} .
- Let $f^* = \operatorname*{argmin}_{f \in \mathbb{F}} \mathsf{KL}(f_0||f^*)$
- THEOREM: let $\Pi^* = (\pi_1^*, \dots, \pi_K^*)$ be the component weights corresponding to f^* . Assume Π^* is unique in that $\sum \pi_k f_k = \sum \pi_k^* f_k = f^*$ only if $\Pi = \Pi^*$. Then, for any fixed $\epsilon > 0$,

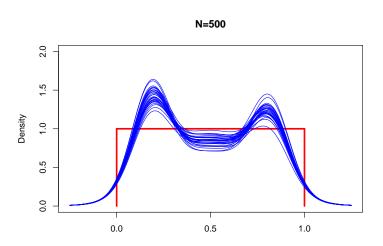
$$\operatorname{pr}(\Pi \in \mathbb{S}^{K-1} : ||\Pi - \Pi^*|| \ge \epsilon \mid x_1, \dots, x_N) \to 0.$$

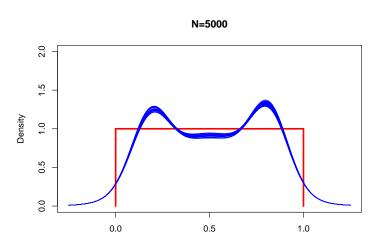
• Π^* is generally unique for normal $f'_k s$ (Yakowitz 1968)











Misspecification for finite mixtures

• REMARK: Assume $\pi_k^* > 0$ for $k = 1, \ldots, K$ and $\sum \pi_k^* = 1$. Then, $f^* = \sum \pi_k^* f_k$ achieves the minimum KL-divergence in $\mathbb F$ with respect to f_0 if and only if

$$\int \frac{f_1}{f^*} f_0 = \ldots = \int \frac{f_K}{f^*} f_0.$$

If some $\pi_k^*=0$, the minimum KL-divergence is achieved where $\int \frac{f_k}{f^*} f_0$ are equivalent for all $\pi_k^*>0$.

Consistency under misspecification

• THEOREM: Assume $x_1^{(0)}, \ldots, x_{N_0}^{(0)}$ are independent with density $f^{(0)}, x_1^{(1)}, \ldots, x_{N_1}^{(1)}$ are independent with density $f^{(1)}$, and let

$$f^{*(0)} = \operatorname*{argmin}_{f \in \mathbb{F}} \ \mathsf{KL}(f^{(0)}||f) \ , \ f^{*(1)} = \operatorname*{argmin}_{f \in \mathbb{F}} \ \mathsf{KL}(f^{(1)}||f).$$

Under uniqueness assumptions for $f^{*(0)}$ and $f^{*(1)}$,

- if $f^{(0)} = f^{(1)}$, $\operatorname{pr}(H_0 \mid X) \to 1$ as $N \to \infty$ and
- if $f^{*(0)} \neq f^{*(1)}$, $pr(H_0 \mid X) \to 0$ as $N \to \infty$.

END THEORETICAL INTERLUDE

TCGA array data: Glioma

- N = 258 glioma tumor samples derived from astrocyte cells
- Methylation measured for $M \approx 450,000$ CpG sites
 - Illumina HumanMethylation450 array
 - Map to ≈ 20000 different genes
 - Sites per gene ranges from 1 to 1032
- Goal: study role of methylation in clinical heterogeneity
 - Lower grade gliomas (LGG) ($N_0=128$) vs. Glioblastoma Multiforme (GBM) ($N_1=130$) tumors

Hierarchical prior for distributional equality

Model shared prior probability for all 450,000 CpGs?

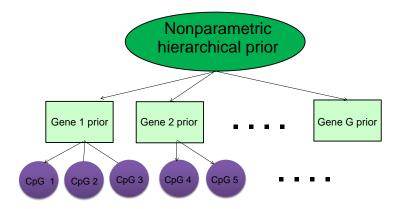
$$P_0 \sim \mathsf{Beta}(1,1)$$

• ...or separate prior probabilities for each gene?

$$P_{0g} \stackrel{iid}{\sim} \text{Beta}(1,1) \quad \text{ for } g = 1, \dots, G$$

Hierarchical prior for distributional equality

• Hierarchical compromise:



Hierarchical prior for distributional equality

• Dirichlet process (DP) prior with Beta base distribution:

$$p_g \stackrel{iid}{\sim} P,$$
 $P \sim \mathsf{DP}(\mathsf{Beta}(a,b),\alpha)$

Equivalently,

$$p_{g} = \sum_{h=1}^{\infty} \pi_{h} \delta_{\theta_{h}},$$

- δ_{θ_h} is a point mass at θ_h
- $\theta_h \stackrel{iid}{\sim} \text{Beta}(a,b)$
- Weights π_h realized from a *stick-breaking process*:

$$\pi_h = V_h \prod_{l < h} (1 - V_l)$$
 $V_h \stackrel{\textit{iid}}{\sim} \mathsf{Beta}(1, lpha).$

DP prior: hyperparameters

• Beta(a, b) base controls marginal prior of association

$$P(\mathsf{CpG} \; \mathsf{association}) = \frac{a}{a+b}.$$

- ullet Concentration lpha controls level of clustering
 - $\alpha \to 0$: shared Beta(a, b) prior for all markers

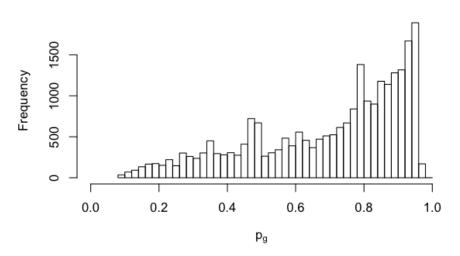
$$p_1 = \cdots = p_G \sim \mathsf{Beta}(a, b)$$

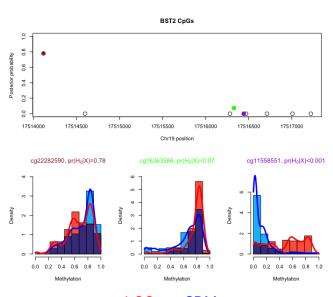
• $\alpha \to \infty$: independent Beta(a, b) prior for each gene

$$p_g \stackrel{iid}{\sim} \mathrm{Beta}(a,b)$$

• In practice set $a = b = \alpha = 1$

Gene-level probabilities

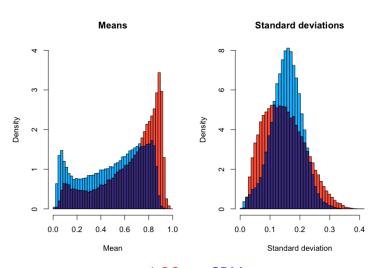




LGG vs. GBM

Eric F. Lock

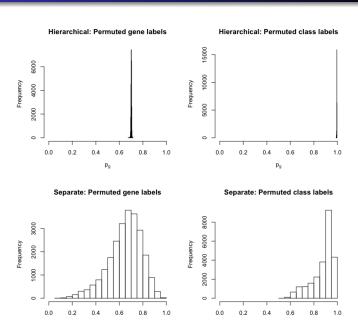
CpGs with posterior probability of equality < 0.01



LGG vs. GBM

TCGA Glioma: Permutation

- Permute data under two different schemes:
 - Randomly scramble the gene labels across CpGs
 - Randomly scramble the class labels at each CpG
- Apply two methods to permutated datasets
 - 1 DP (hierarchical) prior for gene-level probabilities
 - Independent (separate) inference of gene-level probabilities



Eric F. Lock

Thank you!

- References:
 - EF Lock and DB Dunson. Shared kernel Bayesian screening. *Biometrika*, **102**: 829–842, 2015.
 - EF Lock and DB Dunson. Bayesian genome- and epigenome-wide association studies with gene-level dependence. arXiv preprint, 2016.
- R package BayesianScreening:
 - github.com/lockEF/BayesianScreening
- Email: elock@umn.edu