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DNA Methylation

@ Methyl binds to CpG (cytosine-phosphate-guanine) sites
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@ Over 25 million CpG sites in human genome

e Methylation varies over sites / individuals / cell types

@ Can affect gene transcription

Eric F. Lock



TCGA array data: BRCA

@ N = 597 breast cancer tumor samples

e From The Cancer Genome Atlas project

@ Methylation measured for M = 21,986 CpG sites

o lllumina HumanMethylation27 array

o Measurements from 0 (no methylation) to 1 (fully methylated)

@ Goal: study role of methylation in clinical heterogeneity

e Basal (Np = 112) vs. non-Basal (N; = 485) tumor subtypes
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Example distributions

@ Distribution of methylation values for select CpG sites
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Kernel mixtures

@ Model distribution of CpG m (m=1,..., M) as a mixture:
K
Xmn ™~ Zﬂ'mka
k=1

o {Fi}X_, are shared kernels

o My = {mmk}K_, are CpG-specific weights

@ Fy is Normal(ik, ok) truncated between 0 and 1
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Bayesian estimation

@ Use normal-inverse-gamma prior for (pux, ok)'s

@ Use Dirichlet(«) prior for Mp,'s

Gibbs sample from conditional posteriors of

o {1k ou) iy
b {Hm}le

o Kernel memberships {C,}M_;

Estimate « via maximum likelihood during sampling
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Choice of K

@ Choose K to maximize likelihood under cross validation.

o For fixed K:

e Estimate F1,..., Fk, and o from a sub-sample of CpGs

e For each remaining CpG:

@ Hold out a random observation
o Estimate kernel weights on N — 1 remaining observations

o Compute log-density for held out sample

o Consider mean log-density for all held-out observations
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Cross-validated log-likelihood
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Fitted mixture examples
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Test for group equality

@ For group comparisons at a CpG, t- and Wilcoxon tests are
most common

e Bock 2012, Laird 2013
o General tests for distributional equality are rarely used

o But they are well motivated...
o Cancer & normal cells show different variability (Hansen 2011)

e Groups may have differential “stability” across cells:

Example CpG

e e

T 1T 1T 1
0.0 0.2 0.4 0.6 0.8 1.0

Density

01234

Methylation

Eric F. Lock


http://www.nature.com/nrg/journal/v13/n10/full/nrg3273.html
http://www.ncbi.nlm.nih.gov/pubmed/20125086
http://www.nature.com/ng/journal/v43/n8/full/ng.865.html

Test for group equality

@ Compare Basal vs. non-Basal tumor subtypes at each CpG

o Assess whether subtype distributions are different

@ Subtype distributions F,(,,O), F,sql) are mixture of common kernels

ZW()F and F{ ZW(I)F,(,

k=1

@ For each m test

Hom : W(OZ = w(l,z for all k

Him : 7ka #+ 7T for some k.
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Bayesian framework

@ Estimate and fix Fq,..., Fx, and « as before.

Under Hom, N9 = N = M, ~ Dirichlet(a)

o Under Hip, I'IS,S)), I—Ig) ~ Dirichlet(«) are independent

Py is shared prior probability of equality at a given CpG
e Py given Uniform(0, 1) prior (see Scott & Berger 2010)
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Posterior computation

@ The full conditional posterior probability for Hy,, is

PoB()B(7im + ) |
PoB()B(fim + @) + (1 — Po)B(A2) + a)B(AY + a)

° ﬁ(,,',) gives number of realizations in group /i from each kernel
o iy = 79 4 A

e [3 is the multivariate beta function

Ty M)

)= e )
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Posterior computation

40) 1)

@ In practice ny,’, ny;,’ are unknown

@ Kernel memberships are inferred probabilistically

@ Gibbs sample from conditional posteriors of
o (N, M}y
o (i) in Yol
o {P(Hom | ). iln) )}
o Py

@ Average over conditional posterior probabilities for Hyp,
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Basal vs. non-Basal groups

@ Prior probability of equality: Py = 0.82

@ Distribution of posterior probabilities:
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non-Basal groups
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Basal vs. non-Basal groups

@ 2117 CpG sites with P(Hom|X) < 0.01
o Consider association with expression at their gene:

Expression—Methylation Rho Correlations
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o Hegative association & in PAMb50 signature (Parker, 2009):
e MYBL2, EGFR, MIA, SFRP1 and MLPH
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Related work

@ Frequentist tests for distributional equality

e Anderson-Darling, Shapiro-Wilk

@ Bayesian nonparametric tests using Dirichlet processes

o Dunson & Peddada 2008, Pennell & Dunson 2008

@ Bayesian nonparametric tests using Polya trees

e Ma & Wang 2011, Holmes et al 2014
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http://biomet.oxfordjournals.org/content/95/4/859.short
http://onlinelibrary.wiley.com/store/10.1111/j.1541-0420.2007.00885.x/asset/j.1541-0420.2007.00885.x.pdf?v=1&t=i2rsprvf&s=dcb2692ceaec54e873908bdb2f80ac31d6f51f0e
https://stat.duke.edu/~lm186/files/optree.pdf
http://ba.stat.cmu.edu/journal/forthcoming/holmes.pdf

Methods comparison for TCGA data

Apply several methods to TCGA data

o t-test, Wilcoxon test, Anderson-Darling test, Dunson &
Peddada (RDDP), Ma & Wang (co-OPT), Holmes et al.
(PT), and shared kernel test with fixed Py = 0.5.

Permute class labels for each CpG and apply again.

Permutation creates a null model to assess type | error

e Compare distribution of results (p-values or Bayes factors) for
true and permuted data.
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Methods comparison TCGA data
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*THEORETICAL INTERLUDE***
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Abstract testing framework

e Two distributions F(©, F(1) are mixtures

°>—Zwk F and F wa)Fk,
k=1

@ Test whether 7r,(<0) = 7r,((1) Y k.

o FOO F() describe two populations with same strata

o Test whether strata have different proportions
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Abstract testing framework

o If strata/kernel memberships are known:

e Test for association in 2 x K table
o Frequentist approaches: Chi-Square, Fisher’s exact test

o Bayesian Approaches: Good & Crook 1987, Albert 1997

@ If memberships (and perhaps the Fy's) are unknown:

o Little statistical literature

o Addressed partly in Xu et al 2010
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http://projecteuclid.org/euclid.aos/1176350368
http://works.bepress.com/jim_albert/13/
http://link.springer.com/article/10.1007%2Fs13253-010-0020-z

Asymptotic forms

@ Consider behavior of the full conditional for Hy:

PoB(e)B(+ )
PoB()B(fim + @) + (1 — Po)B(0) + a)B(A™M) + «)

as N — oo.

@ For the following assume:
— _No o
e A\ = NoiN, 1S fixed

o M9 A are known
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Asymptotic forms

e THEOREM: Can derive a closed asymptotic form for the full
conditional

@ CORROLARY: Can fully characterize asymptotic distribution
under Hy and H;

e Under Hp : M(©® = N = N, the log Bayes factor has order

K1 1og(N) + 0,(1)

o Under H; : TI® £ N et M* = \oM© 4 (1 — Xo)ND),
The log of the Bayes factor has order

(0) 7TI(<O) (1)
_NZ {)\OTrk log <7T;t> +(1=Xo)7, log <

(1)

£)}o ),
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Asymptotic forms

@ Posterior probability of Hy converges

e Sublinearly to 1 under Hy

e Exponentially to 0 under H;

@ Such rates have been observed for several Bayesian tests

o Kass & Raftery 1995; Walker 2004; Johnson & Rossell 2010.

@ Often such models are “local prior densities”

o The parameter space under Hy has positive density under H;
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Consistency under misspecification

Bayesian context:
e True distribution is not within support of prior

e E.g: data may not result from a finite Gaussian mixture

Misspecified models not “fully” consistent

May still be consistent as a test for distributional equality
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Consistency under misspecification

@ Use work of Kleijn & Van der Vaaart (2006)

@ General behavior under Bayesian misspecification:

o Let IF be space of all distributions admitted by prior
o Let Fy be data generating distribution
o Let F* be distribution in F minimizing KL-divergence to Fy

o Posterior concentrates on F* as N — oo

o Little work on misspecification asymptotics for Bayesian tests
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Misspecification for finite mixtures

Let x1,...,xy be independent with density fj.

o Let IF be define all convex combinations of densities {fi}X_;
Let P define a prior with positive support over F.

e Let f* = argmin KL(%]|f*)
felF

e THEOREM: let M* = (77, ..., 7)) be the component weights
corresponding to f*. Assume [1* is unique in that
Y mfie =Y mifi = f* only if [T =T1*. Then, for any fixed
e>0,

pr(Me Sk~ |IN=N*| > €| x,...,xn) — 0.

o [1* is generally unique for normal f/s (Yakowitz 1968)
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[llustrative example
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[llustrative example
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[llustrative example
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[llustrative example
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Misspecification for finite mixtures

o REMARK: Assume 71 >0 for k=1,...,K and > 7} = 1.
Then, f* =3 m;fi achieves the minimum KL-divergence in F
with respect to fy if and only if

h fk
afh=...= | Lk
fr° /f*o

If some 7 = 0, the minimum KL-divergence is achieved
where [ %fo are equivalent for all 7 > 0.
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Consistency under misspecification

e THEOREM: Assume xfo), . ( ) are independent with
density (0, xfl), . 7X/(v11) are mdependent with density £(1),

and let

£+(0) — argmin KL(f(O)Hf) , £ = argmin KL(f(l)Hf).
felF fel

Under uniqueness assumptions for £*(0) and £*(1),
o if FO =fM) pr(Hy | X) = 1as N — oo and
o if F*(O £ () pr(Hy | X) — 0 as N — oc.
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END THEORETICAL INTERLUDE***
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TCGA array data: Glioma

o N = 258 glioma tumor samples derived from astrocyte cells

@ Methylation measured for M = 450,000 CpG sites

o lllumina HumanMethylation450 array
e Map to =~ 20000 different genes

e Sites per gene ranges from 1 to 1032

@ Goal: study role of methylation in clinical heterogeneity

o Lower grade gliomas (LGG) (Ny = 128) vs. Glioblastoma
Multiforme (GBM) (N; = 130) tumors
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Hierarchical prior for distributional equality

@ Model shared prior probability for all 450,000 CpGs?

Py ~ Beta(1,1)

@ ...or separate prior probabilities for each gene?

Pog i Beta(1,1) forg=1,...,G
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Hierarchical prior for distributional equality

@ Hierarchical compromise:

Gene 1 prior Gene 2 prior Gene G prior

e0000 -
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Hierarchical prior for distributional equality

@ Dirichlet process (DP) prior with Beta base distribution:

iid
pg ~ P7

P ~ DP(Beta(a, b), «)

e Equivalently,

o
pg = Z Thog,
h—1

e Jg, is a point mass at 0y,
o 0,8 Beta(a, b)
o Weights 7, realized from a stick-breaking process:

Th = VhH(l — V/)

I<h

Vi, Beta(1, ).
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DP prior: hyperparameters

@ Beta(a, b) base controls marginal prior of association

a

P(CpG association) = s

@ Concentration « controls level of clustering

o « — 0: shared Beta(a, b) prior for all markers
p1 =+ = pc ~ Beta(a, b)
e a — oo: independent Beta(a, b) prior for each gene

Pe i Beta(a, b)

@ In practiceseta=b=a=1
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TCGA Glioma analysis

Gene-level probabilities
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TCGA Glioma analysis

Postarior probability
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TCGA Glioma analysis

@ CpGs with posterior probability of equality < 0.01
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TCGA Glioma: Permutation

@ Permute data under two different schemes:

© Randomly scramble the gene labels across CpGs

© Randomly scramble the class labels at each CpG

@ Apply two methods to permutated datasets

@ DP (hierarchical) prior for gene-level probabilities

@ Independent (separate) inference of gene-level probabilities
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TCGA Glioma analysis

Hierarchical: Permuted gene labels Hierarchical: Permuted class labels
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Thank you!

@ References:

e EF Lock and DB Dunson. Shared kernel Bayesian screening.
Biometrika, 102: 829-842, 2015.

o EF Lock and DB Dunson. Bayesian genome- and
epigenome-wide association studies with gene-level
dependence. arXiv preprint, 2016.

@ R package BayesianScreening:

e github.com/lockEF/BayesianScreening

@ Email: elock@umn.edu
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