#### Linked Matrix Factorization

Eric F. Lock<sup>1</sup>

with Michael J. O'Connell<sup>2</sup>

<sup>1</sup>University of Minnesota, Division of Biostatistics

<sup>2</sup>Miami University, Department of Statistics

SDSS Seattle, 05/30/2019

### Toxicity screening experiment

- ▶ Data for 1,086 lymphoblastoid cell lines (1000 Genomes Project)
- ▶ 179 chemicals
- Collected by the Rusyn lab (UNC)
  - ▶ Initial analysis described in Abdo et al., 2015
  - ▶ Data available through Synapse DREAM challenge (Eduati et al., 2015)
- ▶ EC10 measured for each cell line × chemical pair
  - ▶ Lowest concentration with 10% cell death

## Cytotoxicity curves



(Ref: Lock et al., 2012)

# Toxicity matrix

•  $X: 1086 \times 179$  of log(EC10) values



### Toxicity matrix

•  $X : 1086 \times 179 \text{ of log(EC10)}$  values



• Heatmap: red = more toxic, blue = less toxic

### Toxicity matrix

•  $X: 1086 \times 179$  of log(EC10) values



• Low rank factorization:  $X \approx UV$ ,  $U: 1086 \times r$ ,  $V: r \times 179$ .

# Toxicity matrix (rank 3 approximation)

•  $X : 1086 \times 179 \text{ of } \log(\text{EC}10) \text{ values}$ 



• Low rank factorization:  $X \approx UV$ ,  $U: 1086 \times 3, V: 3 \times 179$ .

# Toxicity matrix (5% missing values)

•  $X : 1086 \times 179 \text{ of } \log(\text{EC}10) \text{ values}$ 



• Low rank factorization:  $X \approx UV$ ,  $U: 1086 \times r$ ,  $V: r \times 179$ .

# Toxicity matrix (5% missing values)

•  $X : 1086 \times 179 \text{ of } \log(\text{EC}10) \text{ values}$ 



• Low rank factorization:  $X \approx UV$ ,  $U: 1086 \times 3, V: 3 \times 179$ .

# Toxicity matrix (5% missing values)

•  $X : 1086 \times 179 \text{ of } \log(\text{EC}10) \text{ values}$ 



• Low rank factorization:  $X \approx UV$ ,  $U: 1086 \times 3, V: 3 \times 179$ .

#### Chemical attributes

- Also have 9432 quantitative attributes for each chemical
  - ▶ 160 descriptors using Chemistry Development Kit (CDK)
  - ▶ 9,272 descriptors using Simplex representation of molecular structure (SIRMS)

- Linked data matrices:
  - $ightharpoonup X: 1086 imes 179 ext{ of log(EC10) values}$
  - $\triangleright$  Y: 9272  $\times$  179 of chemical attributes

# Vertically linked data



### Vertically linked data: separate factorizations



## Vertically linked data: joint factorization



## Vertically linked data: JIVE factorization



#### Joint + individual factorization methods

▶ JIVE [Lock, Hoadley, Marron, and Nobel, 2013]

▶ AJIVE [Feng, Jiang, Hannig and Marron, 2018]

► SLIDE [Gaynanova and Li, 2018]

► GIPCA [Zhu, Li, Lock, 2018]

### Genotype data

- ▶ Also have genotype data available for each cell line.
  - ➤ Single-nucleotide polymorphisms (SNPs) (minor allele count 0, 1, 2)

- ► Linked data matrices after filtering:
  - $\triangleright$  X: 751 × 105 of log(EC10) values
  - ightharpoonup Y: 105 imes 105 of chemical attributes
  - ▶  $Z:751 \times 441 \text{ of SNPs}$

# Bidimensionally linked data



### Bidimensionally linked data: joint factorization



#### Joint linked matrix factorization: model

Approximation of rank r :

$$X = US_x V^T + E_x$$

$$Y = US_y V_y^T + E_y$$

$$Z = U_z S_z V^T + E_z$$

- $U: 751 \times r, U_7: 441 \times r$
- $V: 105 \times r, \ V_{V}: 105 \times r$
- $\triangleright$   $S_x$ ,  $S_y$ ,  $S_z$  are  $r \times r$
- $ightharpoonup E_x$ ,  $E_y$ ,  $E_z$  are error matrices (iid entries, mean 0)
- Identifiable if
  - $\triangleright$  Columns of each of U,  $U_z$ , V,  $V_v$  are orthonormal
  - $\triangleright$   $S_x$ ,  $S_y$ ,  $S_z$  are diagonal

#### Joint linked matrix factorization: model

Approximation of rank r :

$$X = US_x V^T + E_x$$
$$Y = US_y V_y^T + E_y$$
$$Z = U_z S_z V^T + E_z$$

- $V: 751 \times r, \ U_z: 441 \times r$
- $V: 105 \times r, \ V_{y}: 105 \times r$
- $\triangleright$   $S_x$ ,  $S_y$ ,  $S_z$  are  $r \times r$
- $ightharpoonup E_x$ ,  $E_y$ ,  $E_z$  are error matrices (iid entries, mean 0)
- Identifiable if
  - ightharpoonup Columns of each of U,  $U_z$ , V,  $V_v$  are orthonormal
  - $\triangleright$   $S_x$ ,  $S_y$ ,  $S_z$  are diagonal

#### Joint linked matrix factorization: estimation

▶ Minimize overall squared residuals (SSR):

$$||X - USV||_F^2 + ||Y - US_y V_y||_F^2 + ||Z - U_z S_z V||^2$$

▶ Iteratively estimate each of

$$U, V, S, US_y$$
, and  $U_zS_z$ 

to minimize SSR.

Proceed until convergence

### Joint linked matrix factorization: scaling

- Center each matrix to have mean 0
  - Y: subtract mean from each attribute
  - ▶ Z: subtract mean from each gene
  - ▶ X: subtract overall mean for all EC10 values.

- Scale each matrix to have same total sum of squares.
  - $||X||_F^2 = ||Y||_F^2 = ||Z||_F^2$
  - Gives each dataset same total signal power



Chemicals **SNPs** Cell lines Attributes







#### LMF-JIVE: model

Model decomposition:

$$X = J_x + A_x + E_x$$
  

$$Y = J_y + A_y + E_y$$
  

$$Z = J_z + A_z + E_z$$

where

$$J_{x} = U_{J}S_{Jx}V_{J}^{T}, \ J_{y} = U_{Jy}S_{Jy}V_{J}^{T}, \ J_{z} = U_{J}S_{Jz}V_{Jz}^{T}$$

and

$$A_x = U_{Ax} S_{Ax} V_{Ax}^T, \ A_y = U_{Ay} S_{Ay} V_{Ay}^T, \ A_z = U_{Az} S_{Az} V_{Az}^T$$

- ightharpoonup rank $(J_x) = \operatorname{rank}(J_y) = \operatorname{rank}(J_z) = r$
- ightharpoonup rank $(A_x) = r_x$ , rank $(A_y) = r_y$ , rank $(A_z) = r_z$

#### LMF-JIVE: model

Identifiability conditions:

(i) 
$$row(J_x) = row(J_y)$$
 and  $col(J_x) = col(J_z)$ 

(ii) 
$$row(A_x) \cap row(A_y) = \{\mathbf{0}\}$$
 and  $col(A_x) \cap col(A_z) = \{\mathbf{0}\}$ 

(iii) 
$$row(J_x) \cap row(A_x) = \{\mathbf{0}\}$$
 and  $col(J_x) \cap col(A_x) = \{\mathbf{0}\}.$ 

(iv) 
$$J_y A_y^T = 0_{m_2 \times m_2}$$
 and  $J_z^T A_z = 0_{n_2 \times n_2}$ 



#### LMF-JIVE: estimation

Given ranks, minimize overall squared residuals (SSR):

$$||X - J_x - A_x||_F^2 + ||Y - J_y - A_y||_F^2 + ||Z - J_z - A_z||^2$$

- Iteratively update all terms to minimize SSR
- Proceed until convergence

▶ Post-hoc projections to ensure  $J_y A_y^T = 0_{m_2 \times m_2}$  and  $J_z^T A_z = 0_{n_2 \times n_2}$ 





#### LMF-JIVE: estimation

Given ranks, minimize overall squared residuals (SSR):

$$||X - J_x - A_x||_F^2 + ||Y - J_y - A_y||_F^2 + ||Z - J_z - A_z||^2$$

- Iteratively update all terms to minimize SSR
- Proceed until convergence

▶ Post-hoc projections to ensure  $J_y A_y^T = 0_{m_2 \times m_2}$  and  $J_z^T A_z = 0_{n_2 \times n_2}$ 





## Missing data imputation

- Algorithm to impute missing data in X:
  - Initialize missing entries to obtain the complete matrix  $\hat{X}$ .
  - ▶ (1) Estimate  $\{J_x, A_x\}$  from LMF-JIVE on  $\{\hat{X}, Y, Z\}$ .
  - (2) Update missing entries in  $\hat{X}$ :  $\hat{X}[i,j] = \begin{cases} X_{ij} \text{ if } X_{ij} \text{ is observed} \\ J_x[i,j] + A_x[i,j] \text{ if } X_{ij} \text{ is missing.} \end{cases}$
  - ▶ Repeat steps (1) and (2) until convergence.
- EM Algorithm under Gaussian error
- Allows for imputation of entire rows or columns of X

### Rank selection: imputation cross-validation

- Randomly select values of X to hold out as missing
- Compute relative imputation error for given ranks

$$RSE = \frac{||\hat{X}[\text{missing values}] - X[\text{missing values}]||_F^2}{||X[\text{missing values}]||_F^2}$$

- ▶ Select ranks  $\{r, r_x, r_y, r_z\}$  that minimize RSE
- ► Forward selection approach

### LMF-JIVE: low-rank approximation

▶ Selected ranks: r = 3,  $r_X = 4$ ,  $r_Y = 2$ ,  $r_Z = 6$ 



# Imputation comparison

▶ Relative squared error (RSE) for imputed values

|                                | LMF   | SVD   | softImpute | LMF-JIVE |
|--------------------------------|-------|-------|------------|----------|
| Missing chemical and cell line | 0.878 | 1.02  | 1.00       | 0.854    |
| Missing chemical               | 0.898 | 1.02  | 1.00       | 0.875    |
| Missing cell line              | 0.203 | 0.208 | 1.00       | 0.201    |
| Missing entry                  | 0.164 | 0.112 | 0.113      | 0.114    |

### Thank you!

► Email: elock@umn.edu

► Slides: http://ericfrazerlock.com/Talks.html

▶ MJ O'Connell and EF Lock. Linked Matrix Factorization. *Biometrics*, doi: 10.1111/biom.13010, 2018.

► Code: https://github.com/lockEF/LMF