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Motivating example

Publicly available data from The Cancer Genome Atlas
(TCGA)

Multiple kinds of data for the same set of 348 breast cancer
tumors:

GE: Gene expression data (17814 genes)

miRNA: miRNA data (655 miRNAs)

CN: Copy number data ( 200,000 probes / 19,780 genes)

ME: Methylation data (21,986 CG regions)

MUT: Mutation data (12,481 genes)

RPPA: Reverse phase protein array data (171 proteins)
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Multi-source data example

Multiple high-dimensional data sources for the same objects.
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Exploratory analysis of multi-source datasets

“Joint” analyses ignore features specific to each data source

“Separate” analyses sacrifice power, miss inter-source
dependencies

Goal: simultaneously model dependence and heterogeneity of
data sources

Extend exploratory methods to the multi-source context.

Clustering

PCA
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Multi-source clustering

Joint clustering

A single clustering of the objects, based on all sources

Shen, Olshen, & Ladanyi, Bioinformatics, 2009
Rey & Roth, ICML, 2012
Kormaksson et. al., Annals of Applied Statistics, 2012

Separate clustering

Separate clustering for each source

Post-hoc integration

Assess cluster agreement (Hubert & Arabie, 1985)
Consensus clustering (TCGA research network, Nature, 2012)

Dependent clustering

Pairwise-dependence model

Kirk et. al., Bioinformatics, 2012

Bayesian consensus clustering (BCC)

Eric F. Lock University of Minnesota Division of Biostatistics Exploratory Analysis of Multi-Source Genomic Data



Multi-source clustering

Joint clustering

A single clustering of the objects, based on all sources

Shen, Olshen, & Ladanyi, Bioinformatics, 2009
Rey & Roth, ICML, 2012
Kormaksson et. al., Annals of Applied Statistics, 2012

Separate clustering

Separate clustering for each source

Post-hoc integration

Assess cluster agreement (Hubert & Arabie, 1985)
Consensus clustering (TCGA research network, Nature, 2012)

Dependent clustering

Pairwise-dependence model

Kirk et. al., Bioinformatics, 2012

Bayesian consensus clustering (BCC)

Eric F. Lock University of Minnesota Division of Biostatistics Exploratory Analysis of Multi-Source Genomic Data



Multi-source clustering

Joint clustering

A single clustering of the objects, based on all sources

Shen, Olshen, & Ladanyi, Bioinformatics, 2009
Rey & Roth, ICML, 2012
Kormaksson et. al., Annals of Applied Statistics, 2012

Separate clustering

Separate clustering for each source

Post-hoc integration

Assess cluster agreement (Hubert & Arabie, 1985)
Consensus clustering (TCGA research network, Nature, 2012)

Dependent clustering

Pairwise-dependence model

Kirk et. al., Bioinformatics, 2012

Bayesian consensus clustering (BCC)

Eric F. Lock University of Minnesota Division of Biostatistics Exploratory Analysis of Multi-Source Genomic Data



Bayesian consensus clustering

Separate clustering for each data source

Adhere loosely to an overall clustering

Level of adherence is estimated from the data

Overall and source clusterings are estimated simultaneously

Advantages over traditional consensus clustering:

1 Models uncertainty in both the source and overall clusterings.

2 Permits borrowing of information across sources.

3 Level of adherence is learned for each source.
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Bayesian consensus clustering

Sources X1, . . . ,XM , for a common set of N samples

Overall cluster index Cn ∈ {1, . . . ,K} for samples
n = 1, . . . ,N.

Source cluster index Lmn ∈ {1, . . . ,K} for sources
m = 1, . . . ,M, samples n = 1, . . . ,N.

Source clusters depend partially on overall clusters:

P(Lmn = k|Cn) =

{
αm if Cn = k
1−αm
K−1 otherwise

where αm ∈ [ 1
K , 1] controls level of adherence.
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Bayesian consensus clustering

Probability model fm, with cluster-specific parameters θmk :

P(Lmn = k |Xmn,Cn,Θm) ∝ P(Lmn = k |Cn)fm(Xmn|θmk)

Overall cluster mixture probabilities Π = (π1, . . . , πk):

P(Cn = k |Π, {Lmn, αm}Mm=1) ∝ πk
M∏

m=1

P(Lmn = k|Cn)

Give prior for Π, α′ms, and Θ′ms.

Uniform Dirichlet for Π
Uniform [ 1

K , 1] for αm

Normal-Gamma conjugate prior distribution for Θm, fm

Estimate full posterior via MCMC

Iteratively sample from conditional posteriors of
Π, {αm}Mm=1, {Θm}Mm=1,C and {Lm}Mm=1.
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Simulation example

Simulate data for M = 3 univariate sources.

N = 200 samples
K = 2 Gaussian clusters for each source

Cluster means: µ1 = −1 and µ2 = 1
Standard deviation: σ = 1

Draw α uniformly from 0.5 to 1 (α1 = α2 = α3).

Estimate source clusterings via

Separate clustering: no dependence model between sources.
Joint clustering: assume all sources have same clustering.
Dependent clustering: model pairwise clustering dependence
between sources.
Bayesian consensus clustering

Repeat simulation and estimation 100 times for varying α
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Simulation example

Simulation study (clustering error by adherence level):

0.5 0.6 0.7 0.8 0.9 1.0

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

M=3

True α

E
rr

or

Joint
Separate
Dependent
BCC (estimated α)
BCC (true α)

Eric F. Lock University of Minnesota Division of Biostatistics Exploratory Analysis of Multi-Source Genomic Data



TCGA example

Applied BCC to GE, ME, miRNA & RPPA data for 348
TCGA breast samples

Choose K to maximize mean adjusted adherence
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TCGA example

MCMC mixing (K=3)
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TCGA example

Applied BCC to GE, ME,miRNA & RPPA data
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Figure: PCA plots. Samples are colored by overall cluster; cluster 1 is
black, cluster 2 is red, cluster 3 is blue. Symbols indicate source-specific
cluster; cluster 1 is ‘•’, cluster 2 is ‘+’, cluster 3 is ‘∗’ .
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Exploratory analysis of multi-source datasets

Extend exploratory methods to the multi-source context.

Clustering

Principal components analysis (PCA)
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Toy Example: Two Sources

 
 

X1=          
 

X2=            

Eric F. Lock University of Minnesota Division of Biostatistics Exploratory Analysis of Multi-Source Genomic Data



Toy Example: Two Sources
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PCA Approximation

PCA as a low rank approximation:
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PCA Approximation (r = 1)

 
 

X1=         =                 +           
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JIVE decomposition

Joint and Individual Variation Explained (JIVE):
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JIVE decomposition (r = r1 = r2 = 1)
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PCA vs JIVE

PCA:
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JIVE decomposition

Sources X1, ...,XM of dimension d1, ..., dM for n samples.

Decomposition:

X =


X1

X2
...

XM

 =

J︷ ︸︸ ︷
J1
J2
...
JM

+

A︷ ︸︸ ︷
A1

A2
...

AM

+

R︷ ︸︸ ︷
R1

R2
...

RM



J : d × n is rank r .

Ai : di × n are rank ri .

Ri : di × n are residual matrices.
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JIVE decomposition (factorized form)

Relation to PCA:

X1 =

J1︷︸︸︷
U1S +

A1︷ ︸︸ ︷
W1S1 +R1

...

XM = UMS + WMSM + RM .

S is an r × n score matrix explaining joint variation across
datatypes.

Ui are di × r loading matrices.

Si are ri × n score matrices explaining unique variation.

Wi are di × ri loading matrices.
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Estimation

Fixed ranks r , r1, . . . , rM .

Minimize sum of squared residuals ||R||2F , where

R =


R1

R2
...

RM

 =


X1 − J1 − A1

X2 − J2 − A2
...

XM − JM − AM

 .

Iterative approach:
Fix J. Find A1,A2, . . . ,AM to minimize ||R||2F
Fix A1,A2, . . . ,AM . Find J to minimize ||R||2F .

WLOG may enforce orthogonality of J and A1, . . . ,AM :

JA′ = 0d×d .
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Key Issue: Scaling of Individual Datasets

X1,X2, . . . ,XM of different scale and dimension.

Suggest centering and scaling by total variation.

Subtract mean from each row: Xi → X centered
i

Divide by ||X centered
i ||F :

X scaled
i =

X centered
i

||X centered
i ||F

Gives each dataset same total signal power.
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Rank Selection: Permutation Testing Approach

Extends Peres-Neto et al. (2005)...

To estimate rank of joint structure

Compare

Singular values of concatenated matrix

Singular values after permuting samples within each datatype.

To estimate rank of individual structure

Compare:

Singular values of individual matrix

Singular values after permuting samples within each row.
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The Cancer Genome Atlas (TCGA) Data

Multiple kinds of data for the same set of 348 breast cancer
tumors, from TCGA.

Gene expression data (17814 genes)
miRNA data (655 miRNAs)
Copy number data ( 200,000 probes / 19,780 genes)
Methylation data (21,986 CG regions)
Mutation data (12,481 genes)
Protein data

Tumors classified into 5 subtypes based on the expression
data:

Basal (66 samples)
Her2 (42 samples)
Luminal A (154 samples)
Luminal B (81 samples)
Normal (5 samples)
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JIVE application: Gene expression and miRNA

Applied JIVE decomposition to Gene expression and miRNA.

Permutation testing identifies
Rank 4 joint structure
Rank 22 structure individual to gene expression
Rank 9 structure individual to miRNA

Variation decomposition:
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JIVE Estimates
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JIVE Estimates
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JIVE Estimates

Gene individual (reorder rows and columns)
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JIVE Estimates
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JIVE Estimates

miRNA individual (reorder rows and columns)
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JIVE Estimates
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JIVE Estimates (factorized)
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JIVE Estimates (factorized)
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Joint PCs
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JIVE Estimates (factorized)
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Individual PCs: Expression
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JIVE Estimates (factorized)
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Individual PCs: miRNA
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Variable sparsity

Important signal only on a subset of variables

Motivates use of a sparse model

Can aid results and interpretation.
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Variable Sparsity

Penalized sum-of-squares criterion

||R||2F + λPen(U) +
∑

λi Pen(Wi )

where Pen is a penalty designed to induce sparsity in the
loading vectors and λ, λi are weights.

E.g, Pen may be an L1 penalty, corresponding to the Lasso:

Pen(U) =
∑
|uij |.

Iterative approach:

Fix U,S : Find Wi ,Si to minimize ||Ri ||2F − λi Pen(Wi ), for
each i = 1, ...,M.
Fix W1, ...,WM ,S1, ...,SM : Find U,S to minimize
||R||2F − λPen(U) .
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Gene-miRNA Sparse JIVE

First “Sparse” joint component sample scores:
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JIVE: Related work

Canonical Correlation Analysis (CCA) and Partial Least
Squares (PLS)

H Hotelling, 1936; H. Wold, 1965.
Find pairs of direction vectors to maximize correlation (CCA)
or covariance (PLS)
Limited to two datasets
Overfitting in high-dimensional cases (esp. CCA)
Interference from individual structure (esp. PLS)

Multi-level PCA models

C Di et al., 2009; L Zhou et al., 2010.
Analysis of hierarchical sampling structure, same data source
Global component models differences between sampling
groups, not shared structure

Related multi-source factorization models

CIFA (Z. Guoxo et al., 2014)
Bayesian joint analysis (P. Ray et al., 2014)
JINMF (Yang & Michailidis, 2015)
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Future work: Factorial JIVE

More than two datasets (standard JIVE):
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Future work: Factorial JIVE

Factorial model:
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Future work: higher-order arrays

JIVE and BCC apply to collection of 2D arrays

One dimension in common

Same columns (samples) different rows (variables)

Same rows (variables) different columns (samples)

What if both dimensions are common?

What about higher-order arrays?
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Mixed Art
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Mixed Art: Estimated decomposition 
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Mixed Art: Actual decomposition 
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Future work: higher-order arrays

JIVE applies to a collection of 2D arrays

One dimension in common

Same columns (samples) different rows (variables)

Same rows (variables) different columns (samples)
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What about higher-order arrays?
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Future work: higher-order arrays

Multiple higher-order arrays X1,X2, . . . for a single dataset.

Some dimensions are shared, some aren’t

Example:

X1: fMRI tensor of order 5, RN×T×dx×dy×dz

Samples× Time× X × Y × Z

X2: Gene expression time course tensor of order 3

Samples× Time× Genes

X3: Genotype data matrix RN×ds

Samples× SNPS

Goal: general integrative models for shared dimensions
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Thank you!

BCC reference

EF Lock and DB Dunson. Bayesian Consensus Clustering,
Bioinformatics, 29 (20), 2013.

JIVE reference

EF Lock, KA Hoadley, JS Marron, and AB Nobel. Joint and
Individual Variation Explained (JIVE) for Integrated
Analysis of Multiple Data Types. Annals of Applied
Statistics, 7 (1), 2013.

TCGA breast data reference

Cancer Genome Atlas Network. Comprehensive molecular
portraits of human breast tumours.Nature, 490 (7418),
2012.

Software for JIVE (Matlab) and BCC (R) is available at

www.tc.umn.edu/~elock/software
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