Exploratory Analysis of Multi-Source Genomic Data

Eric F. Lock University of Minnesota Division of Biostatistics

With AB Nobel, JS Marron, K Hoadley, and I Rusyn, UNC Chapel Hill and DB Dunson, AA Koch, Duke University

Johns Hopkins University, 09/28/2015

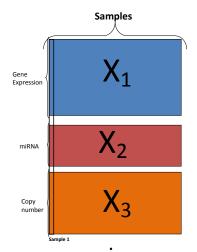
Eric F. Lock University of Minnesota Division of Biostatistics Exploratory Analysis of Multi-Source Genomic Data

Motivating example

- Publicly available data from The Cancer Genome Atlas (TCGA)
- Multiple kinds of data for the same set of 348 breast cancer tumors:
 - **GE**: Gene expression data (17814 genes)
 - miRNA: miRNA data (655 miRNAs)
 - CN: Copy number data (200,000 probes / 19,780 genes)
 - ME: Methylation data (21,986 CG regions)
 - **MUT**: Mutation data (12,481 genes)
 - **RPPA**: Reverse phase protein array data (171 proteins)

Multi-source data example

• Multiple high-dimensional *data sources* for the same objects.



• "Joint" analyses ignore features specific to each data source

- "Joint" analyses ignore features specific to each data source
- "Separate" analyses sacrifice power, miss inter-source dependencies

- "Joint" analyses ignore features specific to each data source
- "Separate" analyses sacrifice power, miss inter-source dependencies
- Goal: simultaneously model dependence and heterogeneity of data sources

- "Joint" analyses ignore features specific to each data source
- "Separate" analyses sacrifice power, miss inter-source dependencies
- Goal: simultaneously model dependence and heterogeneity of data sources
- Extend exploratory methods to the multi-source context.
 - Clustering
 - PCA

- "Joint" analyses ignore features specific to each data source
- "Separate" analyses sacrifice power, miss inter-source dependencies
- Goal: simultaneously model dependence and heterogeneity of data sources
- Extend exploratory methods to the multi-source context.
 - Clustering
 - PCA

Joint clustering

- A single clustering of the objects, based on all sources
 - Shen, Olshen, & Ladanyi, Bioinformatics, 2009
 - Rey & Roth, *ICML*, 2012
 - Kormaksson et. al., Annals of Applied Statistics, 2012

Joint clustering

- A single clustering of the objects, based on all sources
 - Shen, Olshen, & Ladanyi, Bioinformatics, 2009
 - Rey & Roth, ICML, 2012
 - Kormaksson et. al., Annals of Applied Statistics, 2012

Separate clustering

- Separate clustering for each source
- Post-hoc integration
 - Assess cluster agreement (Hubert & Arabie, 1985)
 - Consensus clustering (TCGA research network, Nature, 2012)

Joint clustering

- A single clustering of the objects, based on all sources
 - Shen, Olshen, & Ladanyi, Bioinformatics, 2009
 - Rey & Roth, ICML, 2012
 - Kormaksson et. al., Annals of Applied Statistics, 2012

Separate clustering

- Separate clustering for each source
- Post-hoc integration
 - Assess cluster agreement (Hubert & Arabie, 1985)
 - Consensus clustering (TCGA research network, Nature, 2012)

Dependent clustering

- Pairwise-dependence model
 - Kirk et. al., Bioinformatics, 2012
- Bayesian consensus clustering (BCC)

- Separate clustering for each data source
 - Adhere loosely to an overall clustering
- Level of adherence is estimated from the data
- Overall and source clusterings are estimated simultaneously

- Separate clustering for each data source
 - Adhere loosely to an overall clustering
- Level of adherence is estimated from the data
- Overall and source clusterings are estimated simultaneously
- Advantages over traditional consensus clustering:
 - Models uncertainty in both the source and overall clusterings.
 - Permits borrowing of information across sources.
 - **(3)** Level of adherence is learned for each source.

- Sources X_1, \ldots, X_M , for a common set of N samples
- Overall cluster index $C_n \in \{1, ..., K\}$ for samples n = 1, ..., N.
- Source cluster index $L_{mn} \in \{1, \ldots, K\}$ for sources $m = 1, \ldots, M$, samples $n = 1, \ldots, N$.
- Source clusters depend partially on overall clusters:

$$P(L_{mn} = k | C_n) = \left\{ egin{array}{c} lpha_m ext{ if } C_n = k \ rac{1-lpha_m}{K-1} ext{ otherwise} \end{array}
ight.$$

where $\alpha_m \in [\frac{1}{K}, 1]$ controls level of adherence.

• Probability model f_m , with cluster-specific parameters θ_{mk} :

$$P(L_{mn} = k | X_{mn}, C_n, \Theta_m) \propto P(L_{mn} = k | C_n) f_m(X_{mn} | \theta_{mk})$$

• Overall cluster mixture probabilities $\Pi = (\pi_1, \dots, \pi_k)$:

$$P(C_n = k | \Pi, \{L_{mn}, \alpha_m\}_{m=1}^M) \propto \pi_k \prod_{m=1}^M P(L_{mn} = k | C_n)$$

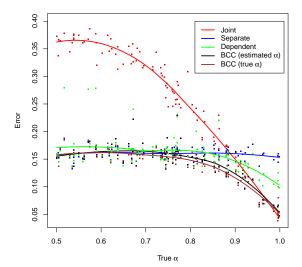
- Give prior for $\Pi, \alpha'_m s$, and $\Theta'_m s$.
 - Uniform Dirichlet for Π
 - Uniform $\left[\frac{1}{K}, 1\right]$ for α_m
 - Normal-Gamma conjugate prior distribution for Θ_m, f_m
- Estimate full posterior via MCMC
 - Iteratively sample from conditional posteriors of $\Pi, \{\alpha_m\}_{m=1}^M, \{\Theta_m\}_{m=1}^M, \mathbb{C} \text{ and } \{\mathbb{L}_m\}_{m=1}^M.$

Simulation example

- Simulate data for M = 3 univariate sources.
 - N = 200 samples
 - K = 2 Gaussian clusters for each source
 - Cluster means: $\mu_1 = -1$ and $\mu_2 = 1$
 - Standard deviation: $\sigma = 1$
 - Draw α uniformly from 0.5 to 1 ($\alpha_1 = \alpha_2 = \alpha_3$).
- Estimate source clusterings via
 - Separate clustering: no dependence model between sources.
 - Joint clustering: assume all sources have same clustering.
 - **Dependent clustering**: model pairwise clustering dependence between sources.
 - Bayesian consensus clustering
- $\bullet\,$ Repeat simulation and estimation 100 times for varying $\alpha\,$

Simulation example

• Simulation study (clustering error by adherence level):



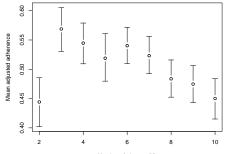
• Applied BCC to GE, ME, miRNA & RPPA data for 348 TCGA breast samples

- Applied BCC to GE, ME, miRNA & RPPA data for 348 TCGA breast samples
- Choose K to maximize mean adjusted adherence

$$\frac{1}{M}\sum_{m=1}^{M}\frac{K\alpha_m-1}{K-1}.$$

- Applied BCC to GE, ME, miRNA & RPPA data for 348 TCGA breast samples
- Choose K to maximize mean adjusted adherence

$$\frac{1}{M}\sum_{m=1}^{M}\frac{K\alpha_m-1}{K-1}$$

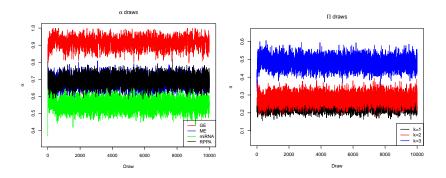


Number of clusters (K)

Eric F. Lock University of Minnesota Division of Biostatistics

Exploratory Analysis of Multi-Source Genomic Data

• MCMC mixing (K=3)

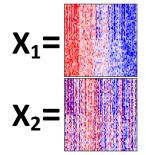


 Applied BCC to GE, ME, miRNA & RPPA data GE (α =0.91 ± 0.06) ME ($\alpha = 0.69 \pm 0.06$) 8 2 20 2 °C 2 PC 2 0 9 -20 20 PC 1 PC 1 miRNA ($\alpha = 0.56 \pm 0.06$) $(\alpha = 0.7 \pm 0.06)$ 2 PC 2 0 2 5 -15 15 10 PC 1 PC 1

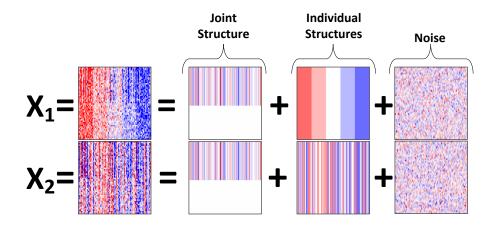
Figure: PCA plots. Samples are colored by overall cluster; cluster 1 is **black**, cluster 2 is red, cluster 3 is blue. Symbols indicate source-specific cluster; cluster 1 is ' \bullet ', cluster 2 is '+', cluster 3 is '*'.

- Extend exploratory methods to the multi-source context.
 - Clustering
 - Principal components analysis (PCA)

Toy Example: Two Sources

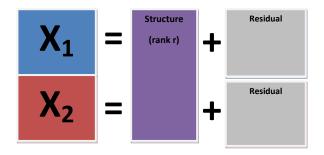


Toy Example: Two Sources

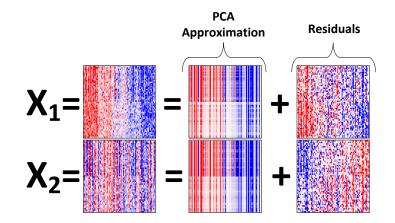


PCA Approximation

• PCA as a low rank approximation:

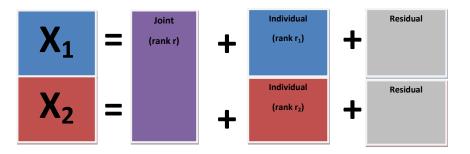


PCA Approximation (r = 1)

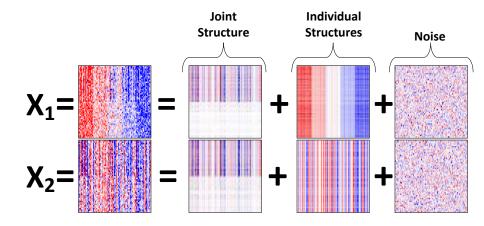


JIVE decomposition

• Joint and Individual Variation Explained (JIVE):

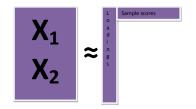


JIVE decomposition $(r = r_1 = r_2 = 1)$

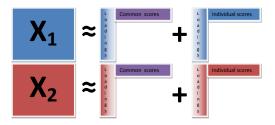


PCA vs JIVE

• PCA:



• JIVE:

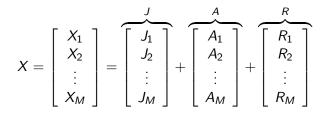


Eric F. Lock University of Minnesota Division of Biostatistics

Exploratory Analysis of Multi-Source Genomic Data

JIVE decomposition

- Sources $X_1, ..., X_M$ of dimension $d_1, ..., d_M$ for *n* samples.
- Decomposition:



- $J: d \times n$ is rank r.
- $A_i: d_i \times n$ are rank r_i .
- $R_i : d_i \times n$ are residual matrices.

JIVE decomposition (factorized form)

• Relation to PCA:

$$X_{1} = \underbrace{U_{1}S}^{J_{1}} + \underbrace{W_{1}S_{1}}^{A_{1}} + R_{1}$$

$$\vdots$$

$$X_{M} = U_{M}S + W_{M}S_{M} + R_{M}.$$

- S is an r × n score matrix explaining joint variation across datatypes.
- U_i are $d_i \times r$ loading matrices.
- S_i are $r_i \times n$ score matrices explaining unique variation.
- W_i are $d_i \times r_i$ loading matrices.

Estimation

- Fixed ranks r, r_1, \ldots, r_M .
- Minimize sum of squared residuals $||R||_F^2$, where

$$R = \begin{bmatrix} R_1 \\ R_2 \\ \vdots \\ R_M \end{bmatrix} = \begin{bmatrix} X_1 - J_1 - A_1 \\ X_2 - J_2 - A_2 \\ \vdots \\ X_M - J_M - A_M \end{bmatrix}$$

٠

Estimation

- Fixed ranks r, r_1, \ldots, r_M .
- Minimize sum of squared residuals $||R||_F^2$, where

$$R = \begin{bmatrix} R_1 \\ R_2 \\ \vdots \\ R_M \end{bmatrix} = \begin{bmatrix} X_1 - J_1 - A_1 \\ X_2 - J_2 - A_2 \\ \vdots \\ X_M - J_M - A_M \end{bmatrix}$$

- Iterative approach:

 - Fix J. Find A₁, A₂,..., A_M to minimize ||R||²_F
 Fix A₁, A₂,..., A_M. Find J to minimize ||R||²_F.

- Fixed ranks r, r_1, \ldots, r_M .
- Minimize sum of squared residuals $||R||_F^2$, where

$$R = \begin{bmatrix} R_1 \\ R_2 \\ \vdots \\ R_M \end{bmatrix} = \begin{bmatrix} X_1 - J_1 - A_1 \\ X_2 - J_2 - A_2 \\ \vdots \\ X_M - J_M - A_M \end{bmatrix}$$

- Iterative approach:
 - Fix J. Find A_1, A_2, \ldots, A_M to minimize $||R||_F^2$
 - Fix A_1, A_2, \ldots, A_M . Find J to minimize $||R||_F^2$.
- WLOG may enforce orthogonality of J and A₁,..., A_M:

$$JA' = 0_{d \times d}.$$

Key Issue: Scaling of Individual Datasets

• X_1, X_2, \ldots, X_M of different scale and dimension.

Key Issue: Scaling of Individual Datasets

- X_1, X_2, \ldots, X_M of different scale and dimension.
- Suggest centering and scaling by total variation.
 - Subtract mean from each row: $X_i \rightarrow X_i^{\text{centered}}$
 - Divide by $||X_i^{\text{centered}}||_F$:

$$X_i^{\text{scaled}} = rac{X_i^{\text{centered}}}{||X_i^{\text{centered}}||_F}$$

Key Issue: Scaling of Individual Datasets

- X_1, X_2, \ldots, X_M of different scale and dimension.
- Suggest centering and scaling by total variation.
 - Subtract mean from each row: $X_i \rightarrow X_i^{\text{centered}}$
 - Divide by $||X_i^{\text{centered}}||_F$:

$$X_i^{\text{scaled}} = \frac{X_i^{\text{centered}}}{||X_i^{\text{centered}}||_F}$$

• Gives each dataset same total signal power.

Rank Selection: Permutation Testing Approach

- Extends Peres-Neto et al. (2005)...
- To estimate rank of joint structure
 - Compare
 - Singular values of concatenated matrix
 - Singular values after permuting samples within each datatype.
- To estimate rank of individual structure
 - Compare:
 - Singular values of individual matrix
 - Singular values after permuting samples within each row.

The Cancer Genome Atlas (TCGA) Data

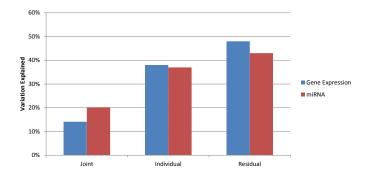
- Multiple kinds of data for the same set of 348 breast cancer tumors, from TCGA.
 - Gene expression data (17814 genes)
 - miRNA data (655 miRNAs)
 - Copy number data (200,000 probes / 19,780 genes)
 - Methylation data (21,986 CG regions)
 - Mutation data (12,481 genes)
 - Protein data
- Tumors classified into 5 subtypes based on the expression data:
 - Basal (66 samples)
 - Her2 (42 samples)
 - Luminal A (154 samples)
 - Luminal B (81 samples)
 - Normal (5 samples)

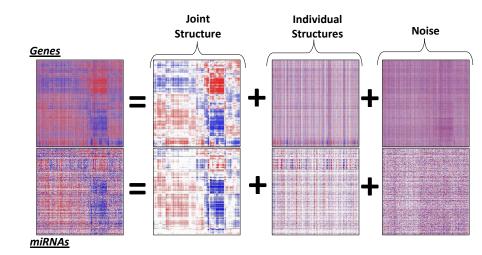
The Cancer Genome Atlas (TCGA) Data

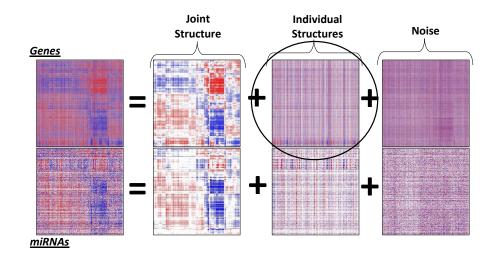
- Multiple kinds of data for the same set of 348 breast cancer tumors, from TCGA.
 - Gene expression data (17814 genes)
 - miRNA data (655 miRNAs)
 - Copy number data (200,000 probes / 19,780 genes)
 - Methylation data (21,986 CG regions)
 - Mutation data (12,481 genes)
 - Protein data
- Tumors classified into 5 subtypes based on the expression data:
 - Basal (66 samples)
 - Her2 (42 samples)
 - Luminal A (154 samples)
 - Luminal B (81 samples)
 - Normal (5 samples)

JIVE application: Gene expression and miRNA

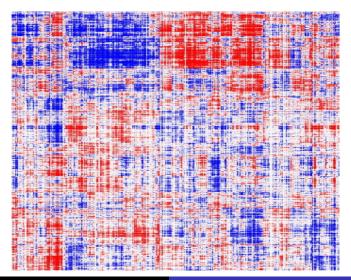
- Applied JIVE decomposition to Gene expression and miRNA.
- Permutation testing identifies
 - Rank 4 joint structure
 - Rank 22 structure individual to gene expression
 - Rank 9 structure individual to miRNA
- Variation decomposition:





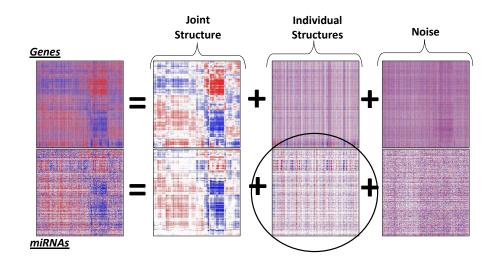


• Gene individual (reorder rows and columns)

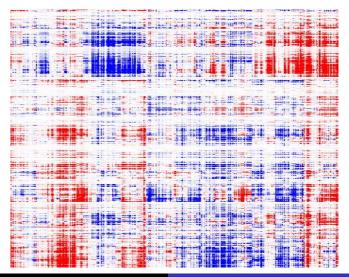


Eric F. Lock University of Minnesota Division of Biostatistics

Exploratory Analysis of Multi-Source Genomic Data

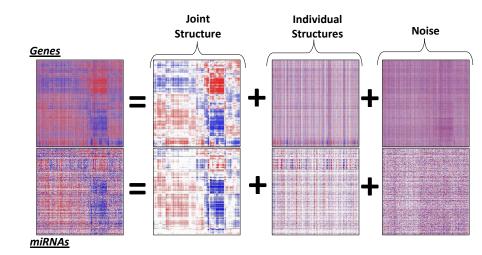


• miRNA individual (reorder rows and columns)

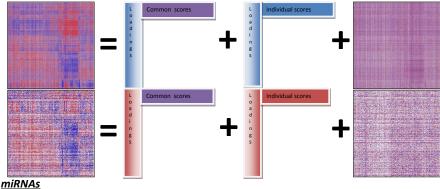


Eric F. Lock University of Minnesota Division of Biostatistics

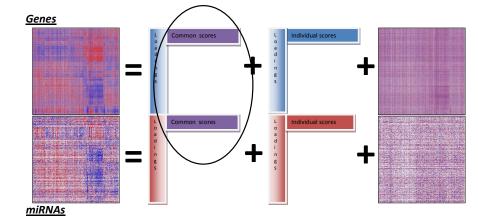
Exploratory Analysis of Multi-Source Genomic Data



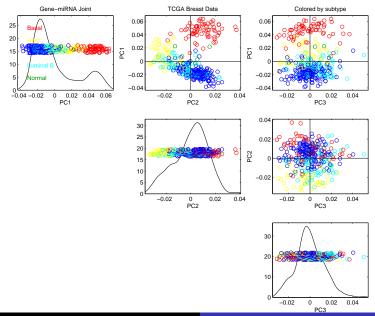
JIVE Estimates (factorized)



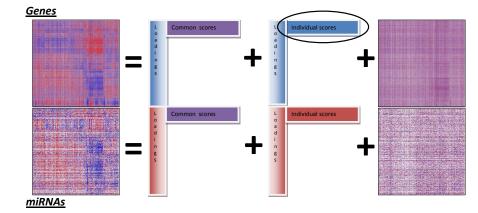
JIVE Estimates (factorized)



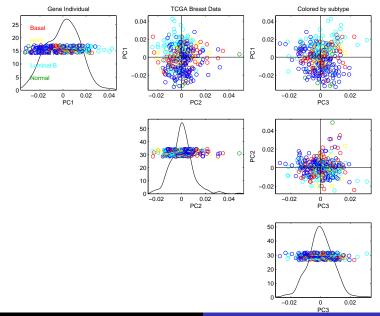
Joint PCs



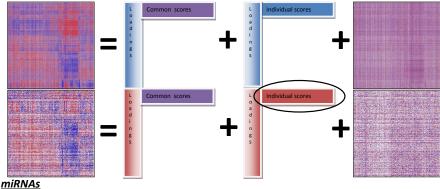
JIVE Estimates (factorized)



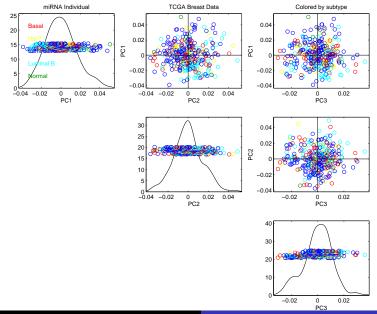
Individual PCs: Expression



JIVE Estimates (factorized)



Individual PCs: miRNA



• Important signal only on a subset of variables

• Motivates use of a *sparse* model

• Can aid results and interpretation.

Variable Sparsity

• Penalized sum-of-squares criterion

$$||R||_{F}^{2} + \lambda \operatorname{Pen}(U) + \sum \lambda_{i} \operatorname{Pen}(W_{i})$$

where Pen is a penalty designed to induce sparsity in the loading vectors and λ , λ_i are weights.

• Penalized sum-of-squares criterion

$$||R||_F^2 + \lambda \operatorname{Pen}(U) + \sum \lambda_i \operatorname{Pen}(W_i)$$

where Pen is a penalty designed to induce sparsity in the loading vectors and λ , λ_i are weights.

• E.g, Pen may be an L_1 penalty, corresponding to the Lasso:

$$\mathsf{Pen}(U) = \sum |u_{ij}|.$$

• Penalized sum-of-squares criterion

$$||R||_{F}^{2} + \lambda \operatorname{Pen}(U) + \sum \lambda_{i} \operatorname{Pen}(W_{i})$$

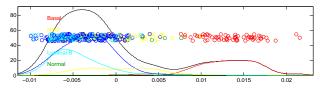
where Pen is a penalty designed to induce sparsity in the loading vectors and λ , λ_i are weights.

• E.g, Pen may be an L_1 penalty, corresponding to the Lasso:

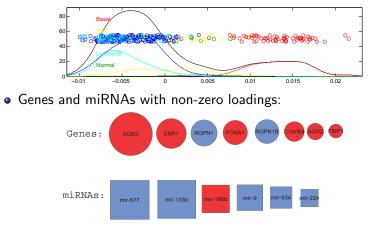
$$\mathsf{Pen}(U) = \sum |u_{ij}|.$$

- Iterative approach:
 - Fix U, S: Find W_i, S_i to minimize $||R_i||_F^2 \lambda_i \operatorname{Pen}(W_i)$, for each i = 1, ..., M.
 - Fix $W_1, ..., W_M, S_1, ..., S_M$: Find U, S to minimize $||R||_F^2 \lambda \text{Pen}(U)$.

• First "Sparse" joint component sample scores:

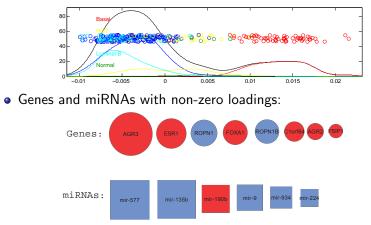


• First "Sparse" joint component sample scores:



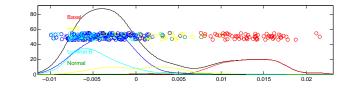
• red: positive loading; blue: negative loading

• First "Sparse" joint component sample scores:

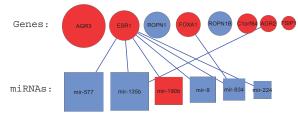


- red: positive loading; blue: negative loading
- miRNA linked if gene is a predicted target in at least two of *Pictar, miRanda, TargetScan* and *RNA22*

• First "Sparse" joint component sample scores:



• Genes and miRNAs with non-zero loadings:



• red: positive loading; blue: negative loading

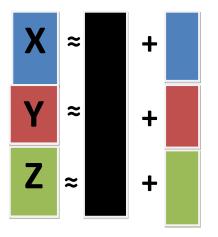
 miRNA linked if gene is a predicted target in at least two of Pictar, miRanda, TargetScan and RNA22

JIVE: Related work

- Canonical Correlation Analysis (CCA) and Partial Least Squares (PLS)
 - H Hotelling, 1936; H. Wold, 1965.
 - Find pairs of direction vectors to maximize correlation (CCA) or covariance (PLS)
 - Limited to two datasets
 - Overfitting in high-dimensional cases (esp. CCA)
 - Interference from individual structure (esp. PLS)
- Multi-level PCA models
 - C Di et al., 2009; L Zhou et al., 2010.
 - Analysis of hierarchical sampling structure, same data source
 - Global component models differences between sampling groups, not shared structure
- Related multi-source factorization models
 - CIFA (Z. Guoxo et al., 2014)
 - Bayesian joint analysis (P. Ray et al., 2014)
 - JINMF (Yang & Michailidis, 2015)

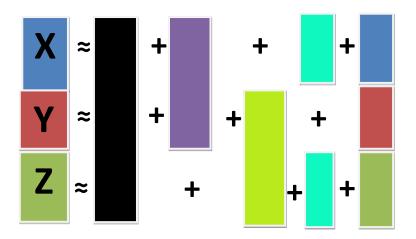
Future work: Factorial JIVE

• More than two datasets (standard JIVE):



Future work: Factorial JIVE

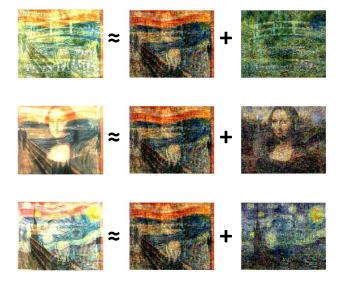
• Factorial model:



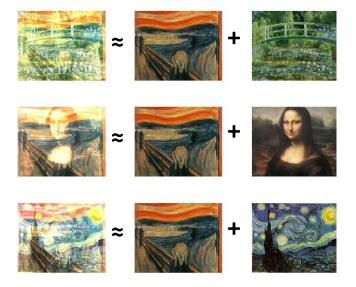
- JIVE and BCC apply to collection of 2D arrays
- One dimension in common
 - Same columns (samples) different rows (variables)
 - Same rows (variables) different columns (samples)
- What if both dimensions are common?
- What about higher-order arrays?

- JIVE and BCC apply to collection of 2D arrays
- One dimension in common
 - Same columns (samples) different rows (variables)
 - Same rows (variables) different columns (samples)
- What if both dimensions are common?
- What about higher-order arrays?

Mixed Art: Estimated decomposition



Mixed Art: Actual decomposition



- JIVE applies to a collection of 2D arrays
- One dimension in common
 - Same columns (samples) different rows (variables)
 - Same rows (variables) different columns (samples)
- What if both dimensions are common?
- What about higher-order arrays?

Future work: higher-order arrays

- Multiple higher-order arrays X_1, X_2, \ldots for a single dataset.
- Some dimensions are shared, some aren't
- Example:
 - X_1 : fMRI tensor of order 5, $\mathbb{R}^{N \times T \times d_x \times d_y \times d_z}$

Samples \times Time $\times X \times Y \times Z$

• $\mathbb{X}_2:$ Gene expression time course tensor of order 3

$\textbf{Samples} \times \textbf{Time} \times \textbf{Genes}$

• X_3 : Genotype data matrix $\mathbb{R}^{N \times d_s}$

$\textbf{Samples} \times \mathsf{SNPS}$

• Goal: general integrative models for shared dimensions

Thank you!

- BCC reference
 - EF Lock and DB Dunson. Bayesian Consensus Clustering, *Bioinformatics*, 29 (20), 2013.
- JIVE reference
 - EF Lock, KA Hoadley, JS Marron, and AB Nobel. Joint and Individual Variation Explained (JIVE) for Integrated Analysis of Multiple Data Types. *Annals of Applied Statistics*, 7 (1), 2013.
- TCGA breast data reference
 - Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. *Nature*, 490 (7418), 2012.
- Software for JIVE (Matlab) and BCC (R) is available at
 - www.tc.umn.edu/~elock/software