Bidimensional Linked Matrix Decomposition for Pan-Omics Pan-Cancer Analysis

Eric F. Lock

University of Minnesota, Division of Biostatistics

JSM Virtual, 08/06/2020

Matrix factorization

• Gene expression matrix $X : m \times n$

• *m* genes for *n* breast cancer tumor samples

Tumor samples

• Low rank factorization: $X \approx UV$, $U: m \times r$, $V: r \times n$.

Matrix factorization (r=3)

Genes

• Gene expression matrix $X : m \times n$

• *m* genes for *n* breast cancer tumor samples

Tumor samples

• Low rank factorization: $X \approx UV$, $U : m \times 3$, $V : 3 \times n$.

Matrix factorization (r=3)

• Gene expression matrix $X : m \times n$

• *m* genes for *n* breast cancer tumor samples

• Low rank factorization: $X \approx UV$, $U : m \times 3$, $V : 3 \times n$.

Matrix factorization

- First two principal component scores
 - Colored by breast tumor subtype

Component 1 scores

Vertically linked data

Tumor samples

Vertically linked data: separate factorizations

Tumor samples

Vertically linked data: joint factorization

Vertically linked data: JIVE factorization

Joint + individual factorization methods

- ▶ JIVE [Lock, Hoadley, Marron, and Nobel, 2013]
 - "Joint and Individual Variation Explained"
- ▶ R.JIVE [O'Connell and Lock, 2016]
- ▶ AJIVE [Feng, Jiang, Hannig and Marron, 2018]
- SLIDE [Gaynanova and Li, 2018]
- GIPCA [Zhu, Li, Lock, 2018]
- COBE, SIFA, MOFA, & more!

JIVE Estimates

JIVE Estimates

JIVE Estimates (factorized)

JIVE Estimates (factorized)

Eric F. Lock Bidimensional Linked Matrix Decomposition for Pan-Omics Pan

Horizontally linked data

Horizontally linked data: JIVE factorization

Tumor-Specifc Columns Shared PCs

Figure: Principal components of the estimated column-shared structure, colored by subtype: Basal, HER2, Lum A, Lum B.

Pan-omics pan-cancer integration!

BIDIFAC: general framework

Consider matrices $\{\mathbf{X}_{ij}: M_i \times N_j \mid i = 1, \dots, I, j = 1, \dots, J\}.$

$$\mathbf{X}_{\cdot\cdot} = \begin{bmatrix} \mathbf{X}_{11} & \dots & \mathbf{X}_{1I} \\ \vdots & \ddots & \vdots \\ \mathbf{X}_{J1} & \dots & \mathbf{X}_{IJ} \end{bmatrix}$$

$$\mathbf{X}_{i \cdot} = [\mathbf{X}_{i 1}, \cdots, \mathbf{X}_{i q}]$$

$$\mathbf{X}_{.j} = \left[egin{array}{c} \mathbf{X}_{1j} \ dots \ \mathbf{X}_{
ho j} \ \mathbf{X}_{
ho j} \end{array}
ight]$$

BIDIFAC+: general framework

Decompose X. into low-rank structural *modules*:

$$\mathbf{X}_{\cdot\cdot} = \sum_{k=1}^{\kappa} \mathbf{S}_{\cdot\cdot}^{(k)} + \mathbf{E}_{\cdot\cdot}, \qquad (1)$$

where

$$\mathbf{S}_{00}^{(k)} = \begin{bmatrix} \mathbf{S}_{11}^{(k)} & \mathbf{S}_{12}^{(k)} & \dots & \mathbf{S}_{1q}^{(k)} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{S}_{p1}^{(k)} & \mathbf{S}_{p2}^{(k)} & \dots & \mathbf{S}_{pq}^{(k)} \end{bmatrix}$$

presence of each $\mathbf{S}_{ij}^{(k)}$ is determined by $\mathbf{R} : I \times \kappa$ and $\mathbf{C} : J \times \kappa$:

$$\mathbf{S}_{ij}^{(k)} = \begin{cases} \mathbf{0}_{M_i \times N_j} & \text{if } \mathbf{R}[i,k] = 0 \text{ or } \mathbf{C}[j,k] = 0 \\ \mathbf{U}_i^{(k)} \mathbf{V}_j^{(k)} & \text{if } \mathbf{R}[i,k] = 1 \text{ and } \mathbf{C}[j,k] = 1 \end{cases}$$

BIDIFAC+: objective

• Minimize the following objective over \mathbf{R}, \mathbf{C} , and $\{\mathbf{S}_{\cdot}^{(k)}\}_{k=1}$:

$$||\mathbf{X}_{\cdot\cdot} - \sum_{k=1}^{\kappa} \mathbf{S}_{\cdot\cdot}^{(k)}||_{F}^{2} + \sum_{k=1}^{\kappa} \lambda_{k} ||\mathbf{S}_{\cdot\cdot}^{(k)}||_{*}^{2}$$

where $|| \cdot ||_*$ gives the nuclear norm

$$\mathsf{SVD}(\mathbf{A}) = \mathbf{U}\mathbf{D}\mathbf{V}^T \rightarrow ||\mathbf{A}||_* = \sum \mathbf{D}[i, i].$$

► Choice of λ_k's

Determined by random matrix theory for singular values D

• Gaurantees each module $S_{..}^{(k)}$ is low-rank.

▶ Any submatrix (**R**[, k], **C**[, k]) can have a non-zero module

BIDIFAC+: Identifiability

• Let $\mathbb{S}_{\hat{X}}$ be the set of possible decompositions for $\hat{X}_{..}$:

$$\mathbb{S}_{\hat{X}} = \left\{ \{ \mathbf{S}_{\boldsymbol{\cdot}}^{(k)} \}_{k=1}^{K} \mid \hat{\mathbf{X}}_{\boldsymbol{\cdot}} = \sum_{k=1}^{K} \mathbf{S}_{\boldsymbol{\cdot}}^{(k)} \right\}.$$

Theorem

Consider $\{\hat{\mathbf{S}}_{..}^{(k)}\}_{k=1}^{K} \in \mathbb{S}_{\hat{\mathbf{X}}}$ and let $\mathbf{U}_{.}^{(k)}\hat{\mathbf{D}}^{(k)}\mathbf{V}_{.}^{(k)T}$ give the SVD of $\hat{S}_{..}^{(k)}$. The following three properties uniquely identify $\{\hat{\mathbf{S}}_{..}^{(k)}\}_{k=1}^{K}$. $\{\hat{\mathbf{S}}_{..}^{(k)}\}_{k=1}^{K}$ minimizes $\sum_{k=1}^{\kappa} \lambda_{k} ||\mathbf{S}_{..}^{(k)}||_{*}$ over $\mathbb{S}_{\hat{\mathbf{X}}}$,

- ▶ { $\hat{\mathbf{U}}_{i}^{(k)}[\cdot, r]$: $\mathbf{R}[i, k] = 1$ and $\hat{\mathbf{D}}^{(k)}[r, r] > 0$ } are linearly independent for i = 1, ..., p,
- ▶ { $\hat{\mathbf{V}}_{j}^{(k)}[\cdot, r]$: $\mathbf{C}[j, k] = 1$ and $\hat{\mathbf{D}}^{(k)}[r, r] > 0$ } are linearly independent for j = 1, ..., q.

- ▶ TCGA data for 6793 samples representing 29 cancer types:
 - ACC, BLCA, BRCA, CESC, CHOL, CORE, DLBC, ESCA, HNSC, KICH, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, MESO, OV, PAAD, PCPG, PRAD, SARC, SKCM, STAD, TGCT, THCA, THYM, UCEC, and UCS.
- Data for 4 different 'omics platforms
 - Gene expression (mRNA), miRNA, DNA methylation, and protein abundance

•
$$(2^4 - 1) \cdot (2^{29} - 1) = 8053063665$$
 possible modules!

• Variance explained for each module $S_{\bullet}^{(k)}$ (K = 50):

• Top structural modules, ranked by variance explained:

Module	Cancer types	Omics sources
1	All cancers	mRNA miRNA Meth Protein
2	All cancers	miRNA
3	BLCA BRCA CESC CHOL CORE DLBC ESCA HNSC	Meth
	LIHC LUAD LUSC OV PAAD PRAD SKCM STAD	
	TGCT UCEC UCS	
4	ACC BLCA CHOL CORE DLBC ESCA HNSC KICH	mRNA Meth
	KIRC KIRP LGG LIHC LUAD LUSC MESO PAAD PCPG	
	SARC SKCM STAD THCA THYM	
5	All cancers	mRNA
6	BRCA	mRNA miRNA Meth Protein
7	LGG	mRNA miRNA Protein
8	All cancers *but* LGG	Protein
9	THCA	mRNA miRNA Protein
10	All cancers *but* LGG and TGCT	miRNA
11	CHOL KIRC KIRP LIHC	mRNA miRNA Meth Protein
12	LGG	Meth
13	BLCA CESC CORE ESCA HNSC LUSC SARC STAD	mRNA miRNA Meth Protein
14	KICH KIRC KIRP	mRNA miRNA Protein
15	BLCA BRCA CESC CHOL ESCA HNSC LUAD LUSC	mRNA miRNA
	PAAD PRAD SKCM STAD TGCT UCEC UCS	

• Top structural modules, ranked by variance explained:

Module	Cancer types	Omics sources
1	All cancers	mRNA miRNA Meth Protein
2	All cancers	miRNA
3	BLCA BRCA CESC CHOL CORE DLBC ESCA HNSC	Meth
	LIHC LUAD LUSC OV PAAD PRAD SKCM STAD	
	TGCT UCEC UCS	
4	ACC BLCA CHOL CORE DLBC ESCA HNSC KICH	mRNA Meth
	KIRC KIRP LGG LIHC LUAD LUSC MESO PAAD PCPG	
	SARC SKCM STAD THCA THYM	
5	All cancers	mRNA
6	BRCA	mRNA miRNA Meth Protein
7	LGG	mRNA miRNA Protein
8	All cancers *but* LGG	Protein
9	THCA	mRNA miRNA Protein
10	All cancers *but* LGG and TGCT	miRNA
11	CHOL KIRC KIRP LIHC	mRNA miRNA Meth Protein
12	LGG	Meth
13	BLCA CESC CORE ESCA HNSC LUSC SARC STAD	mRNA miRNA Meth Protein
14	KICH KIRC KIRP	mRNA miRNA Protein
15	BLCA BRCA CESC CHOL ESCA HNSC LUAD LUSC	mRNA miRNA
	PAAD PRAD SKCM STAD TGCT UCEC UCS	

Sample scores

Eric F. Lock

Bidimensional Linked Matrix Decomposition for Pan-Omics Pan-

1000

1000

Sample scores

Eric F. Lock

Bidimensional Linked Matrix Decomposition for Pan-Omics Pan-

800

XIST-

1000

1000

800

• Top structural modules, ranked by variance explained:

Module	Cancer types	Omics sources
1	All cancers	mRNA miRNA Meth Protein
2	All cancers	miRNA
3	BLCA BRCA CESC CHOL CORE DLBC ESCA HNSC	Meth
	LIHC LUAD LUSC OV PAAD PRAD SKCM STAD	
	TGCT UCEC UCS	
4	ACC BLCA CHOL CORE DLBC ESCA HNSC KICH	mRNA Meth
	KIRC KIRP LGG LIHC LUAD LUSC MESO PAAD PCPG	
	SARC SKCM STAD THCA THYM	
5	All cancers	mRNA
6	BRCA	mRNA miRNA Meth Protein
7	LGG	mRNA miRNA Protein
8	All cancers *but* LGG	Protein
9	THCA	mRNA miRNA Protein
10	All cancers *but* LGG and TGCT	miRNA
11	CHOL KIRC KIRP LIHC	mRNA miRNA Meth Protein
12	LGG	Meth
13	BLCA CESC CORE ESCA HNSC LUSC SARC STAD	mRNA miRNA Meth Protein
14	KICH KIRC KIRP	mRNA miRNA Protein
15	BLCA BRCA CESC CHOL ESCA HNSC LUAD LUSC	mRNA miRNA
	PAAD PRAD SKCM STAD TGCT UCEC UCS	

Module 6

Sample scores

Eric F. Lock

Bidimensional Linked Matrix Decomposition for Pan-Omics Pan-

1000

200

Sample scores

- Support: NCI grant R21CA231214-01
- ► References:
 - BIDIFAC: J Park & EF Lock. Integrative Factorization of Bidimensionally Linked Matrices. *Biometrics*, 76 (1): 61-74 2020.
 - BIDIFAC+: EF Lock, J Park & KA Hoadley. Bidimensional linked matrix factorization for pan-omics pan-cancer analysis. *Preprint*, arXiv:2002.0260, 2020.

► Code:

BIDIFAC: https://github.com/lockEF/bidifac