Integrative Factorization of Bidimensionally Linked Matrices

Eric F. Lock
with Jun Young Park
University of Minnesota, Division of Biostatistics

JSM Denver, 07/30/2019

Matrix factorization

- Gene expression matrix $X: m \times n$
- m genes for n breast cancer tumor samples

Tumor samples

- Low rank factorization: $X \approx U V, U: m \times r, V: r \times n$.

Vertically linked data

Vertically linked data: separate factorizations

Tumor samples

Vertically linked data: joint factorization

Tumor samples

Vertically linked data: JIVE factorization

Tumor samples

Joint + individual factorization methods

- JIVE [Lock, Hoadley, Marron, and Nobel, 2013]
- AJIVE [Feng, Jiang, Hannig and Marron, 2018]
- SLIDE [Gaynanova and Li, 2018]
- GIPCA [Zhu, Li, Lock, 2018]
- See Session 598 (Wed 8:30-10:20 am)!
- COBE, SIFA, MOFA, \& more!

Horizontally linked data

Motivating Data

- Gene expression and miRNA data for breast cancer tumor and normal tissue data from TCGA
- 500 most variable genes
- 500 most variable miRNA
- 660 tumor samples
- 86 independent normal samples

Bidimensionally linked data: BIDIFAC

Bidimensionally linked data: BIDIFAC

Tumor samples
Normal samples

Genes

miRNAs

Bidimensionally linked data: BIDIFAC

Bidimensionally linked data: BIDIFAC

Tumor samples

Genes

Normal samples
$+$
miRNAs

Bidimensionally linked data: BIDIFAC

Bidimensionally linked data: BIDIFAC

Tumor samples

Genes

Normal samples
$+$
miRNAs

Bidimensionally linked data: BIDIFAC

Bidimensionally linked data: BIDIFAC

Tumor samples

Genes

Normal samples
$+$
miRNAs

Bidimensionally linked data: BIDIFAC

BIDIFAC: general framework

Consider a set of $p q$ matrices $\left\{X_{i j}: m_{i} \times n_{j} \mid i=1, \ldots, p, j=1, \ldots, q\right\}$, which may be concatenated to form the matrix

$$
\begin{aligned}
& X_{00}=\left[\begin{array}{ccc}
X_{11} & \ldots & X_{1 q} \\
\vdots & \ddots & \vdots \\
X_{p 1} & \ldots & X_{p q}
\end{array}\right] \\
& X_{i 0}=\left[X_{i 1}, \cdots, X_{i q}\right] \\
& X_{0 j}=\left[\begin{array}{c}
X_{1 j} \\
\vdots \\
X_{p j}
\end{array}\right]
\end{aligned}
$$

Accordingly, let $m_{0}=\sum_{i=1}^{p} m_{i}$ and $n_{0}=\sum_{j=1}^{q} n_{j}$.

BIDIFAC: 2×2

Suppose that $X_{i j}=G_{i j}+R_{i j}+C_{i j}+l_{i j}+E_{i j}$, where

$G_{00} R_{i 0}, C_{0 j}$ and $I_{i j}$ are low-rank.

BIDIFAC: objective

- Objective:

$$
\begin{aligned}
& f_{2}\left(\left\{G_{i j}, R_{i j}, C_{i j}, I_{i j} \mid i=1, \ldots, p, j=1, \ldots, q\right\}\right) \\
= & \frac{1}{2} \sum_{i=1}^{p} \sum_{j=1}^{q}\left\|X_{i j}-G_{i j}-R_{i j}-C_{i j}-I_{i j}\right\|_{F}^{2} \\
+ & \lambda_{00}\left\|G_{00}\right\|_{*}+\sum_{i=1}^{p} \lambda_{i 0}\left\|R_{i 0}\right\|_{*}+\sum_{j=1}^{q} \lambda_{0 j}\left\|C_{0 j}\right\|_{*}+\sum_{i=1}^{p} \sum_{j=1}^{q} \lambda_{i j}\left\|I_{i j}\right\|_{* \cdot}
\end{aligned}
$$

- Where $\|\cdot\|$ defines the nuclear norm

$$
\begin{aligned}
\operatorname{SVD}(A) & =U D V^{T} \text { with singular values } D[i, i]=d_{i} \\
& \rightarrow\|A\|_{*}=\sum_{i=1}^{\min \{m, n\}} d_{i}
\end{aligned}
$$

- Update $G_{00} R_{i 0}, C_{0 j}$ and $I_{i j}$ until convergence

BIDIFAC: Tuning parameters

- $(1+p+q+p q) \lambda_{i j}$ parameters need to be determined!
- Conditions are necessary to have nonzero $\widehat{G}_{00}, \widehat{R}_{i 0}, \widehat{C}_{0 j}, \widehat{\imath}_{i j}$.
$-\max _{j} \lambda_{i j}<\lambda_{i 0}<\sum_{j} \lambda_{i j}$
$-\max _{i} \lambda_{i j}<\lambda_{0 j}<\sum_{i} \lambda_{i j}$
- $\max _{j} \lambda_{0 j}<\lambda_{00}<\sum_{j} \lambda_{0 j}$
$-\max _{i} \lambda_{i 0}<\lambda_{00}<\sum_{i} \lambda_{i 0}$

BIDIFAC: Tuning parameters

- Random matrix theory to automatically determine λ 's
- If $E: m \times n$ has independent sub-Gaussian entries with variance $1, \sqrt{m}+\sqrt{n}$ gives a tight upper bound on the largest singular value of E
- 1.) Estimate variance of error $E_{i j}$ for each matrix ij (MAD)
- 2.) Scale each $X_{i j}$ to have error variance 1
- 3.) Set penalties as follows
- $\lambda_{00}=\sqrt{m_{0}}+\sqrt{n_{0}}$
- $\lambda_{i 0}=\sqrt{m_{i}}+\sqrt{n_{0}}$
- $\lambda_{0 j}=\sqrt{m_{0}}+\sqrt{n_{j}}$
- $\lambda_{i j}=\sqrt{m_{i}}+\sqrt{n_{j}}$
- Guaranteed to satisfy necessary conditions for non-zero solution

BIDIFAC: dual L_{2} objective

- Equivalent form of BIDIFAC objective:

$$
\begin{aligned}
& f_{1}\left(\left\{\mathbf{U}_{i j}^{(\cdot)}, \mathbf{V}_{i j}^{(\cdot)} \mid i=0, \ldots, p, j=0, \ldots, q,(i, j) \neq(0,0)\right\}\right) \\
= & \sum_{i=1}^{p} \sum_{j=1}^{q}\left\|\mathbf{X}_{i j}-\mathbf{U}_{i 0}^{(G)} \mathbf{V}_{0 j}^{(G) T}-\mathbf{U}_{i 0}^{(R)} \mathbf{V}_{i j}^{(R) T}-\mathbf{U}_{i j}^{(C)} \mathbf{V}_{0 j}^{(C) T}-\mathbf{U}_{i j}^{(I)} \mathbf{V}_{i j}^{(I) T}\right\|_{F}^{2} \\
+ & \lambda_{00}\left(\left\|\mathbf{U}_{00}^{(G)}\right\|_{F}^{2}+\left\|\mathbf{V}_{00}^{(G)}\right\|_{F}^{2}\right)+\sum_{i=1}^{p} \lambda_{i 0}\left(\left\|\mathbf{U}_{i 0}^{(R)}\right\|_{F}^{2}+\left\|\mathbf{V}_{i 0}^{(R)}\right\|_{F}^{2}\right) \\
+ & \sum_{j=1}^{q} \lambda_{0 j}\left(\left\|\mathbf{U}_{0 j}^{(C)}\right\|_{F}^{2}+\left\|\mathbf{V}_{0 j}^{(C)}\right\|_{F}^{2}\right)+\sum_{i=1}^{p} \sum_{j=1}^{q} \lambda_{i j}\left(\left\|\mathbf{U}_{i j}^{(I)}\right\|_{F}^{2}+\left\|\mathbf{V}_{i j}^{(I)}\right\|_{F}^{2}\right)
\end{aligned}
$$

- Gives posterior mode of Bayesian model where
- Errors $E_{i j}$ are iid $N(0,1)$
- Entries of $\mathbf{U}_{i j}^{(\cdot)}, \mathbf{V}_{i j}^{(\cdot)}$ are iid $N\left(0,1 / \lambda_{i j}\right)$
- Motivates MAP imputation for missing data

Data Analysis: TCGA Breast Cancer Data

Proportion of variance explained \& (rank):

	Global	Global+Row	Global+Col	Global+Row+Col	Signal
Tumor mRNA	$0.14(34)$	$0.32(68)$	$0.45(93)$	$0.58(127)$	$0.67(173)$
NAT mRNA	$0.23(34)$	$0.50(68)$	$0.44(41)$	$0.66(75)$	$0.78(83)$
Tumor miRNA	$0.09(34)$	$0.46(67)$	$0.30(93)$	$0.63(126)$	$0.76(175)$
NAT miRNA	$0.13(34)$	$0.66(67)$	$0.24(41)$	$0.75(74)$	$0.76(79)$

Data Analysis: TCGA Breast Cancer Data

Model	Components	Rank	SWISS	p-value
BIDIFAC	Signal	173	0.54	0.002
	Global	34	0.69	0.046
	Row	34	0.75	0.085
	Col+Indiv	105	0.52	0.003
	Col	59	0.48	0.029
	Indiv	46	0.79	0.003

- SWISS score: normalized variability within clinical subtypes.
- p-value: tests if the set of factor scores of the estimated parameters are associated with patients' survival.

Data Analysis: TCGA Breast Cancer Data

Figure: Principal components of the estimated column-shared structure, colored by subtype: Basal, HER2, Lum A, Lum B.

- Pan-omics pan-cancer integration!

Thank you!

- Support: NCI grant R21CA231214-01
- Slides: http://ericfrazerlock.com/Talks.html
- Code: https://github.com/lockEF/bidifac
- J Park and EF Lock. Integrative Factorization of Bidimensionally Linked Matrices. arXiv:1906.03722, 2019.
- See also: MJ O'Connell and EF Lock. Linked Matrix Factorization. Biometrics, doi: 10.1111/biom.13010, 2018.
- Session 461, Wed 8:30-10:20am!

